
FINAL REPORT

on the completion of the contract 170895W0281

Integrated Collaborative Model in Research and Education with
Emphasis on Small Satellite Technology

Supported by the European Office of Aerospace Research and
Development (EOARD), United States Air Force

223/231 Old Marylebone Road, London NW1 5TH UK

Type of Proposal: Response to US Government Broad Agency Announcement (BAA)

Principal Investigator:
Prof. Peter ARATO, Dr. Sc.

Head of Department
Department of Process Control

Technical University of Budapest
Milegyetem rkp. 9
H-1521 Budapest

Phone: (361) 463 2699
Fax: (361) 463 2204
e-mail: arato@fsz.bme.hu

Contents
Part

Detailed description and text book of curriculum on high-level logic synthesis A
Description and user's manual of the multiuser educational design tool PIPE B
Standard benchmark set solved in the frame of the curriculum C
Experiences and statistics of the curriculum D
Developing a VLSI module generator as a part of a collaborative engineering curriculum E

Budapest, January, 1996

19990204 017
rdi1r QUALME M72C-1Z 4

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

January 1996 Final Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Integrated Collaborative Model in Research and Education with Emphasis on Small Satellite F6170895W0281
Technology

6. AUTHOR(S)

Prof. Peter Arato

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Technical University of Budapest
Building R, Muegyetem rkp.9 N/A
Budapest H-1 521
Hungary

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

EOARD
PSC 802 BOX 14 SPC 95-4025
FPO 09499-0200

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited. A

13. ABSTRACT (Maximum 200 words)

This report results from a contract tasking Technical University of Budapest as follows: Develop an integrated, collaborative model in research
and education with emphasis on small satellite technology.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Too many to count
EOARD 16. PRICE CODE

N/A

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
298-102

HIGH-LEVEL LOGIC SYNTHESIS

Detailed description and text book of the curriculum
at the Department of Process Control, Faculty of Electrical Engineering and

Informatics, Technical University of Budapest

Edited by

Peter Arato

Authors:

Peter Arat6, Istvain Jankovits, Tama's Visegraidy

Budapest, 1996

Contents

1. Introduction 1
2. Elementary Operation Graph (EOG) 4
3. Reducing the restarting period 6

3.1. Inserting buffers 6
3..2. Applying multiple copies of operations 8
3.3. Combining the methods 10
3.4. Symbolic representation of recursive loops 11
3.5. Handling of conditional branches 13

4. Synchronisation 15
5. Examples for applying the algorithms RESTART and SYNC 20

5.1. Example 1 20
5.2. Example 2 22

6. Scheduling as arrangement of synchronizing delay effects 26
7. Allocation 30

7.1. Covering of non concurrent operations 30
7.2. Topological cover of operations 35

8. Multiple-process recursive loops 38
8.1. Overlapped (pipelined) utilisation of recursive loops 38
8.2. Loop scheduling 41
8.3. Classification of recursive problems 43
8.4. External synchronisation 45

9. Control principles 48
9.1. Centralized control path 48
9.2. Distributed control path 51

10. Scheduling methods 54
10.1. Stages of scheduling and allocation 55
10.2. Initial allocation 56
10.3. Initial approximation of the optimal solution 59
10.4. Scheduling 61

10.4.1. Scheduling using Integer Linear Programming (ILP) 62
10.4.2. List scheduling 64
10.4.3. Practical applications of list scheduling with hardware constraints 67
10.4.4. Force-directed scheduling 71

10.5. Conditional execution 73
10.5.5. Worst-case model 74
10.5.2. Probability-based model 74
10.5.3. Realisation 75

10.6. Examples 77
References 98
For further reading 99

1. Introduction

The high-speed digital signal processing and most of the real time applications require special-

purpose hardware units executing a special task or being able to solve a limited problem set.

Due to the technological development, the size and the price of such units are being reduced but

the speed and the complexity of the executable tasks are increasing. The functional parts of the

units are the data path consisted of processors and the data connections between them and the

control part co-ordinating the data path. One of the ways of increasing the processing speed is

the pipeline mode enabling to introduce new input data before obtaining the results for the

previous ones. The frequency of the data introduction expresses how often the unit can be

restarted with new input data. This restarting period determines the throughput of the unit. The

longest time collapsing from the introduction of an input data until receiving the result calculated

on it is called the latency of the unit. Reducing the restarting period may cause a longer latency.

Based on the problem to be solved by the special-purpose unit, defining the processors, the data

connections and the control part under several constraints (speed, cost, size, technology, etc.) is

the structure design. There are many commercial computer-aided design (CAD) tools

(VIEWLOGIC, LOG/IC, ABEL, XILINX, CADENCE, etc.) starting with the structure as input

and yielding a complete documentation for fabricating the unit (layout for VLSI ASIC, FPGA

programs, etc.). In most cases, the input of these tools is a register transfer level (RTL)

description of the structure. Among the RTL structural descriptive languages, VHDL is the most

wide-spread and standardized. The procedure from the structural description to the realization in

silicon is called silicon compilation and can be executed by commercial CAD tools called silicon

compilers.

Obviously many different structures can be designed for a given task or problem set to be solved.

Designing an advantageous structure for silicon compilation is called high-level synthesis (HLS)

which starts with a specification of the problem to be solved by the unit and provides the RTL

description of the structure. Based on the initial specification, a behavioral prescription is

generated firstly which refers to fictive elementary operations of the problem to be solved.

There are many variations how to split a problem into elementary operations, therefore the

effectiveness of the BLS procedure is strongly influenced by this step. Unfortunately, the optimal

behavioral prescription as a decomposition cannot be generated without trials and heuristics. The

most advantageous formal specification of the behavioral prescription is a dataflow-like

representation which is easy to be described also by VHDL on its behavioral level. The next step

of the FLS is to schedule and synchronize the elementary operations by a proper control in

order to fulfill the throughput requirements without violating the other constraints (available

building blocks as hardware resources, technology, etc.). Based on a schedule, the processors can

be specified by constructing proper subsets of elementary operations executable by the same

processor. This step of the BLS is called allocation which covers the elementary operations by a

set of real processors already representing the structural design. The allocation constraints may

require identical elementary operations in the same processors, or a limited complexity of the

processors, or a regular structure (systolic array), etc. Each of these constraints may need

different schedules for a beneficial structure. Therefore, the scheduling and the allocation steps are

not independent of each other and trials and heuristics could not be avoided for finding an optimal

solution. Each step of the HLS involves NP-complete problems. In this sense, no systematic

method can be formulated for a global optimum in the BLS. However, there exist a lot of

approaching methods for finding locally optimal or simply beneficial solutions in the steps of the

HLS separately. These JLS methods are very important and efficient, since they usually yield a

more advantageous stucture for the silicon compilation than a structure defined by intuition. After

having defined the structure, almost all the freedom of the behavioral prescription is lost. The

BLS methods are dedicated to control this freedom-loosing step by step in order to provide a

beneficial structure for the further design phasis.

Based on the above considerations, Figure I illustrates the main steps of IlLS.

Formulated
Problem in high-level
Problem language

High- •Behavioral

levelElementary Datan Control description
eratoStransfer (data flowSsynthesis erationcontrol flowgraph representation

theoretical data path)

:_____ eseri.... RT pipelining
schthesi throughput

RTevl prgrammableOSprocessors Allocationt. Covering of
. i.: DSP k , elementary
S! "ALU operations

ULM. by processors

CeHsption PRTL, VHDL

Synthesis ABELfromI

RTL level LOG/ICS, ~VIEWLOGIC
• ::... i XLINXI

CADENCE

:-: ,:::'EPLD, ASIC

Figure I

The main steps of high-level synthesis

In this book, models and methods are presented for the high-level logic synthesis of pipeline

structures. The problem to be solved by the structure is initially split into elementary theoretical

operations with arbitrary duration times. The behavioral prescription of this system is based on a

dataflow-like representation which provides an easy way to formulate the scheduling and
! 2

allocation steps of the methods. In the basic method presented firstly, the pipeline mode needs no

extra efforts and the method ensures a restarting period which can be given in advance. The

mobility and scheduling of the elementary theoretical operations are represented by inserting extra

buffer registers into the dataflow-like data path and a structural pipelining can be established by

applying extra copies of some operations. The minimal number of buffers to be inserted, the

optimal selection of the operational units to be applied in multiple copies and the minimal number

of the required copies are the main goals in the first design phase. Based on these results, the

second part of the method provides a solution to the resource allocation problem. It is proven that

the concurrence of two elementary" operations can be considered as a compatibility relation

between them. Thus, a proper cover of the non-concurrent operations can represent the hardware

resources i. e. the real processors. Calculating the cover, several constraints for the types of

processors and the data path structure can be taken into consideration.

Besides the basic model and method, the well-known HLS methods (list scheduling, force-

directed scheduling, TLP method) are also presented based on the most relevant references on this

field.

In the appendix, the usage of a HLS CAD software tool is illustrated on standard benchmark

problems.

3

2. The Elementary Operation Graph (EOG)

The problem to be solved can be considered-as a sequence of elementary operations between the

input (xl,...xn) and the output data (yl...ym). The data connections and the elementary

operations represent a principal data path for the problem to be solved. The control of this

principal data path can be imagined as a centralized counter or simple distributed handshake units

(shown later). The pipeline scheduling and allocation are accomplished on the principal data path

and the resulting structure also involves the control specification. The principal data path is

assumed to be synchronized by a clock signal, which also influences of the elementary operations,

i. e. the duration or execution time is specified by the number of the clock periods between the

beginning and the end of the operation.

y 1=x2-x1*w
2a S: a y2-x2+xl*w

xl x2 x1 0
0

*w

10

10 0 . (i,h)

2 0 10 31
-+ e(i)

5 5 ti
15 15

$l y2 15 15•

b FigureI C d
a: The problem to be solved, b: A data-flow representation, c: The Elementary Operation

Graph (EOG), d: Notations for EOG

A simple graph representation of the principal data path is illustrated in Figure 1 for the basic cell

of a fast Fourier-transformation algorithm as the problem to be solved. Applying the notation of

Figure 1.d, the numbers at the inputs of the elementary operations e(i) of the EOG refer to the

points of time, at which the first data arrive on these inputs. For example, v(2,1)=10 on the left

input of e(2), because the first data arrives from e(1) in the 10-th clock cycle. In this case, e(1) is

the predecessor of e(2) (in notation: e(1)->e(2)) and t(1)=10 involves that e(1) provides its first

output in the 10-th clock cycle. The elementary operations of the EOG are assumed to have a

dataflow-like character [7]:

a./ e(i) is started only after having finished every e(j), for which e(j)->e(i) holds.

b./ e(i) requires all its input data during the whole duration time t(i).

c./ e(i) may change its output during the whole duration time t(i).

d./ e(i) holds its actual output stable until its next start.

4

For the sake of simplicity, each e(i) in the EOG (each node) may have only one output data

(leaving edge) and at most two input data (arriving edge) except the conditional branches (shown

later). If the output supplies several inputs; then several edges may represent the same single

output.

The latest first output of the whole EOG determines the latency (L) of the principal data path. In

Figure 1.c, L=15. In a pipeline mode, the second input data of the EOG is introduced earlier than

L. In this way, the cyclic restarting with new input data occurs more frequently than the period

determined by L. The pipeline mode means that the restarting period (R) is shorter than L.

Thus, the throughput for input data sequences can be increased depending on the value of R. It is

obvious, that there are some limitations for decreasing the value of K because the duration times

of the operations in the EOG and the data connections strongly influence the earliest acceptance

of the new data. In the next chapters, a method will be outlined for achieving a desired restarting

period by some modifications of the EOG.

i5

3. Reducing the restarting period

3.1. Inserting buffers
Let it be assumed that the EOG does not contain loops. In this case, the EOG can be considered

as a simple assembly of independent sequences of operations starting with an operation at the

input of the EOG and ending with an operation at the output of the EOG. Let these sequences be

called transfer sequences (TS).

X1 x2 0

1 6 4h h h
2 q(h) q(h)' t(h) t(

v(i,h)

2 55
8,5 2 q(i) q(J) q p

3• q~ ~) I

3 5 3 5j
o

10 q(h)-t(h)+to) q(j) to)
10

2 2 q(h)'-t(h)+l

12 q(p)=l+t(j) c

a b a
b

Figure2 Figure 3

Elementary operation graph for illustrating a: A fragment of a transfer sequence
the transfer and busy time sequences b: The new busy times after inserting the extra

buffer register
c: A symbolic notation for the buffer register

inserted additionally for reducing the re-
starting period

The EOG in Figure 2 involves the TS-s, as follows:

S(1,1)= e(1),e(2),e(3)

S(1,2)=e(1),e(2),e(5),e(6),e(7)

S(4,1)=e(4,1)=e(4),e(5),e(6),e(7) or with a simplified notation:

S(1,1)=1,2,3

S(1,2)=1,2,5,6,7

S(4,1)=4,5,6,7

The notation S(i,k) means the k-th TS beginning with e(i).

6

Each S0i,k) involves a sequence of duration times D0i,k). For example, D(4,1) belongs to S(4,1):
D(4, 1)=t(4),t(5),t(6),t(7) or simply D(4, 1)=4,2,3,2

If e(i)->e(j) then according to conditions -b and c in the previous chapter, e(i) must not be

restarted with new input data more frequently than the time period t(i)+tGj) allows it. Otherwise,

e(j) could not receive stable input data during its whole duration time. Thus, e(i) can be

considered in a busy state during the time domain q(i)=t(i)+t(j). In Figure 2, the values of q(i) are

given on the left side of the nodes. Note, that q(2) has two different values depending on the

successor operations e(3) or e(5), and for the e(i)-s driving directly the outputs of the EOG,
.- ii ::t(j)=O is considered. Thus, to each S(i,k), a busy time sequence Q(i,k) can be ordered. For

:.• example:

Q(1,1)=q(1),q(2),q(3) i.e. 5,8,5

:. "Q(1 ,2)=q(1),q(2),q(5),q(6),q(7) i.e. 5,5,5,5,2, where q(2) occurs with different values

depending on the TS.

Si•:If each S0i,k) is considered separately, then the above constraints does not allow to restart it in

shorter time periods than the maximal value in Q(i,k). In this sense, the shortest restarting period

minR(i,k) of S0i,k) can be expressed:

v. ' R(i,k)>=maxQ(i,k)+l

S:: ,minR(i,k)=maxQ(i,k)+l, where +1 stands for an extra clock cycle to properly separate the

:: :restarting periods.

S+ According to Figure 2: minR(1,1)=9

S. minR(1 ,2)=6

. ~minR(4,1)=7

It is trivial that the minimal restarting period for the whole EOG is:

minR=max(minR(i,k))=max(maxQ(i,k)+l).

In Figure 2: minR=9

' To reduce the value of minR, additional buffer registers may be inserted into the EOG. The

S~principle of the method is illustrated on a fragment of a TS in Figure 3. By inserting a buffer

i~i::•!.:::::register as an additional special operation e(p) with t(p)=l, the busy time of e(h) can be reduced

if t(j)>l. Let it be assumed that max(Q(i,k))=q(h) and t(h)>l and tGj)>l hold before inserting the
.::_i~i:i:;-buffer. In this case, q(h)'<q(h) holds after the insertion of the buffer and so the modified value of

minR(i,k) can be smaller than it was originally. This way of reducing the restarting period by

inserting a buffer after e(h) cannot be effective any more if max(Q(i,k))=t(h)+l has been

achieved. If e(h) has no successor i.e. it produces one of the outputs of the whole EOG, then

q(h)=t(h) is interpreted [7], and so the buffer insertion after e(h) has no sense. Thus, the minimal
value of the restarting period obtainable by buffer insertion is:

minR=max(maxD(i,k)+2)

To achieve this limit, a buffer register is required after each e(h) having a busy time q(h) greater

than minR-1 and having no successor operation with a duration time 1 excepted the e(h)-s at the

output of the EOG [7],[8]. In Figure 4, the only necessary buffer insertion for the EOG in Figure

2 is illustrated providing minR=5+2=7. It is trivial that the latency of the EOG may increase in

consequence of inserting buffers, but this- is not the case in Figure 4, since the latency is

determined by the longest transfer sequence i. e. ending with y2 which is not affected by the

buffer insertion.

xl x2 0 Start

5 6 L
2 4

4i-:i+1

455 5y e(i) has no successor? n

y K n y q nin
7 R<t(i)+1 n __(i)>R- 1

6 5 16n F y
R<t(i)+2/6 5 3

1 3 10 nBuffer ijsertion after e(i)

11___2__7__n__ - Iy

yl , 2 1 n myR<=R Y

y2 12 R cannot be achieved by
buffer insertion

Figure 4 K
The modified EOG of Figure 2 by Stop
inserting a buffer for achieving minR=7 Figure 5

The flow diagram of the algorithm SEPTUN
(R denotes the desired restarting period, N is

the number of the operations in EOG)

Based on the principle outlined above, a simple algorithm can be formulated for achieving a

desired value of the restarting period R by inserting the fewest pieces of buffers. This algorithm is

illustrated by the flow diagram in Figure 5 and called SEPTUN, since it is derived from the

separate tuning of the transfer sequences as shown above.

3.2. Applying multiple copies of operations
To achieve a shorter restarting period than the value minR obtainable by buffer insertion, multiple

copies of some operations must be applied. Let it be assumed that the desired restarting period for

the transfer sequence in Figure 6.a is R=8. Applying the algorithm SEPTUN, the buffer insertion

8

can provide only minR=22 as it is shown in Figure 6.b. It can be seen that the limitation of the

further reduction is represented by e(3).

6 6431
2 2

5 5
- -Multiple copies are
1 required for the further

3 3 reduction of R
20 20

"3 d314 4
6 6

6
0 1

5 5
2 2

6 6 minR=22

2 R=8 is desired2

a b

Figure 6
a: A transfer sequence with a desired value of R=8
b: The buffer insertion after applying SEPTUN

Applying multiple copies of e(3) and the buffer on its input may allow the further reduction of the

restarting period if a proper control is assumed (shown later). Let this situation be examined in

Figure 7. If the control of the structure ensures that the input buffers of the copies are restarted

with new data periodically after each other, then the arriving times of the first data can be

expressed as follows:

v(i(2),h)=v(i(l),h)+R

v(i(3),h)=v(i(l),h)+2 *R

9

So, the first copy receives the first data at v(i(1),h) and its next data arrives at v(i(1),h)+c(i)*R.

Obviously, each copy has a time interval of c(i)*R between its two subsequent data. According to

the busy time condition

c(i)*R>=t(i)+t(j)+1

must hold. Thus, for a desired R, the minimal required value of c(i) can be expressed as:
c(i)=[(t(i)+t6j)+l))/R],

where the symbol i...] denotes the smallest integer which is greater or equal to the value of the

expression within these brackets.

h h

t~h) t(h)

v(i,h V(i(1),h) I v((2),h v(i(c(i),h

'M t() - 1i))

toj)

Figure 7

Replacing e(i) by c(i) copies

Note that each copy of e(i) needs an extra buffer at its input, since otherwise the reduced

restarting period allowable only by applying multiple copies would hurt the busy time condition

assumed for the elementary operations. Without these input buffers, a new data would change the

input of a previous copy too early. A proper control (shown later) is to be applied for enabling

only actual input buffer each restarting period.

3.3 Combining the methods
If the algorithm SEPTUN inserts a buffer between e(i) and eaj), then for further reduction of the

restarting period, at least

c(i)=[(t(i)±2)/RJ.

copies of e(i) are required to achieve the desired value of R. It is trivial that this buffer can be left

out without increasing the minimal number of copies if

[(t(i)+2)/Ri=[(t(i)+thd)+1)IR holds.

Considering again the transfer sequence in Figure 6, the desired value R=8 requires at least
10

[(20+1+1)/81=3

copies of e(3). In this case [(20+4+1/8)]>[(20+2)/81, therefore the buffer register between e(3)

and e(4) cannot be neglected without increasing the required number of copies for e(3).

It may occur that a buffer inserted by SEPTUN is connected directly to multiplied operations

only. Obviously, such buffers can always be neglected, since the unavoidable input buffers of the

multiple copies can take over their tasks.

Generally, it can be assumed that inserting buffers is not as expensive as applying multiple copies.

Therefore, the reduction of the pipeline restarting period should be started by the SEPTUN

algorithm and applying multiple copies is only the next step, if the desired value of R cannot be

achieved by SEPTUN alone. In this case, the optimality in realizing a desired value of the

restarting period can be formulated, as to insert the minimal number of buffer registers and

applying as few copies as possible. For this aim, SEPTUN can easily be modified and completed,

as shown in Figure 8 by the flow diagram of the algorithm called RESTART. It can be seen that

preserving the buffers inserted by the SEPTUN algorithm, the minimal value of the busy time

cannot be smaller than 2 in an EOG without a recursive loop (shown later), since an inserted

buffer cannot represent a shorter busy time than 2. Thus, the shortest restarting period obtainable

by the algorithm RESTART would be 3 without the last step before the lower stop label. This

step, however, neglects all of the buffers inserted by SEPTUN, if each operation becomes to be

multiplied. This is always the case if R=1 is desired in a loopless EOG, i. e. each operation is

replaced by c(i)=[(t(i)+t0)+1)/1l=q(i)+1 copies.

3.4. Symbolic representation of recursive loops
Recursive loops in an EOG require special handling, because the nature of a loop represents the

lower limit in reducing the pipeline restarting period. In Figure 9, a symbolic loop-representation

is illustrated. It is trivial that the first operation of the loop can start to process new data only after

the result obtained with previous data has already arrived from the last operation of the loop.

Therefore, the duration of the loop is the sum of all durations inside the loop. In Figure 9:

T(i)=t(k)+t(I)+t(m)+t(n).

Prescribing an extra clock cycle for the proper separation, the loop limits the restarting period to

T(i)+l. In case of more than one loops in an EOG

minR>=maxT(i)+1

holds. In the symbolic representation, the loop e(r(i)) is considered as a single operation during

the calculation of minR, but it is assumed to be devided into four parts e(r(i))/1, e(r(i))/2,
e(r(i))/3, e(r(i))/4. Following from the recursive character, the pipeline restarting period of these

parts cannot be made shorter by inserting buffers between them or by multiplicating them.

11

Start
i.X0

i:-n

e(i) has no successor

Y_ R<t I(i)+l1 n [y q(i)>R-1I

7 -R<t(i)+2y

Buffr insertion after e(i)

n y
i=N

,,_,,_n minR<=R

,,x

Stop

I

q(i)>R-1

Calculate c(i)=[(t(i)+t(j)+1)/R]
for all e(i) such that e(i)->e(j)
and select the maximal value
of c(i) and replace e(i) by this
number of copies

Check [(t(i)+t(j)+ 1)/R]=[(t(i)+t(k)+ 1)/R]
for all not multiplied e(k) such that e(j)->e(k)
Neglect e(j) if it is a buffer and the equation holds.

n y

Neglect the buffers which are followed directly
by multiplied operations only

Stop

Figure 8
The flow diagram of the algorithm RESTART. (R denotes the desired restarting period,
N is the number of operations in EOG before the buffer insertion and N' is it after that).

12

Emphasizing this fact, the loop parts are symbolized by squares instead of circles as shown in

Figure 9. Obviously, a recursive loop cannot consist of a single operation only, since a direct feed-

back from the output to the input of the same operation would hurt the constraint requiring stable

input data during the whole duration time. This conflict can be eliminated in EOG by establishing

the feed-back of the single operation through a buffer register inserted at its output.

"t(k) W t(n) t W

t(W)
e(r(i)) ri/

Figure 9

Symbolic representation of a recursive ioop

3.5. Handling of conditional branches

Conditional branches in an EGG do not need special handling, since the condition checking can be
•ii): •!i~iconsidered as a special operation, the result of which enables the next operations receiving the

' conditions formally as normal additional data inputs. In this way, alternative sections are

:•.:i--•generated in the transfer sequences without any changes in the formal handling of the EGG except

during the allocation procedure (shown later). In Figure 10, the symbolic representation of a

simple conditional branch is illustrated. The condition checking is a comparator in this case and

the alternative sections are closed by a multiplexer (MUIX) operation which is also controlled by

the output of the condition checking operation. The same problem could be solved by other EOGG
structures as well. For example, if the condition checking output were connected only to the

MUIX operation, then the calculation would be also correct, but the two sections of operations

would not be alternative any more, which is not advantageous during the allocation procedure

13

(shown later). Obviously, it is always unavoidable to insert special operations with three inputs

into the EOG for the above simple formal handling of conditional branches.

a b\ c\ d xl x2

condition 0 0
checking 1 2

10 2
1 if 1

xl- 1

1-a /b 11,(23,...)(3 2'(14,...)

5

.+ RRmninR= 12

y

Figure 11
Illustration of the synchronization problem

((l-a)*c)/d if xl--x2

(lIb+c)Id if xl<>x2

Figure 10
Symbolic representation of a conditional branch

14

4. Synchronisation

The dataflow-like character of the EOG involves that an operation can be started by the arrival of

all of its input data. An other assumption for the operations is that they need all of their input data

to be unchanged during the whole duration. This condition is not met automatically even for an

initial EOG, and the modifying effects of the algorithm RESTART may also cause conflicts in this

sense. The problem is illustrated in Figure 11. For the inputs of e(3), the data arrival times are:

v(3,2)=2 and v(3,4)=11, where the number 4 refers to the buffer as e(4) inserted between e(1) and

e(3). If the pipeline restarting period R=minR=12, then the second data arrives at 23 and 14

respectively. It means that e(3) senses the next input change after v(3,4)=11 at 14. Therefore, the

input data of e(3) are unchanged between 11 and 14 only in the clock cycles 12, 13, i.e. for 2

clock cycles instead of the required t(3)=5. This synchronization problem may always arise, if an

operation has two or more inputs.

xl x2

0 0
h"r 1 2

t(h) t(r) 1S21

Sv•ir 11, (23,...) 11, (23,...)

t~~h i) r

y

Figure 12 Figure 13
The general situation for the synchronization A symbolic representation of insertingbuffers into the EOG in Figure 11

In Figure 12, let it be assumed that

b(i)=max(v(i,h),v(i,r),...) and b(i)=v(i,r)

In this case, b(i) or v(i,r) can be called the earliest possible starting time of e(i).

For each e(h)->e(i), a time difference z(i,h)=b(i)-v(i,h) can be introduced. The second change of

the output of e(h) occurs at v(i,h)+R-t(h). Therefore, the time interval, in which both input data

of e(i) are unchanged:

v(i,h)+R-t(h)-b(i) or substituting b(i)=z(i,h)+v(i,h):

R-z(i,h)-t(h)

Since the input data of e(i) must be stable simultaneously for at least t(i), the inequality

R-z(i,h)-t(h)>=t(i)

15

must hold for the proper operation. If it is not the case, then an extra delay effect p(i,h) is

required between e(h) and e(i). The minimal value of this delay is

minp(i,h)=z(i,h)+t(h)+t(i)-R.

The maximal allowable value of the delay effect is maxp(i,h)=z(i,h), since a longer delay would

increase the latency. Thus, the allowable interval for the delay effect is:

z(i,h)+t(h)+t(i)-R<=p(i,h)<=z(i,h).

If e(i) is a copy of a multiplied operation then
S~minp(i,h)=z(i,h)+l+t(i)-e(i)*KR

since e(h) is always a buffer register with t(h)=1 and only each c(i)-th restarting period can cause

changes at the input of e(i).

Obviuosly, a negative or zero result for minp(i,h) means that no synchronization problem arises

on this input even without extra extra delay effects.
If the data path between e(h) and e(i) is inside a recursive loop and the other input of e(i) from

e(r) is outside the loop and b(i)=v(i,r), then let e(i) be called a loop-border operation. In this

case, the possible extra delay effect between e(h) and e(i) would increase the total duration of the
loop. To avoid this drawback, the delay effect must be transferred to the input of the loop. The

first operation of a recursive loop, i. e. the input of the loop is always free from synchronizing

problem, since the first feed-back input data of this operation is an undefined initial value and so

its arriving time can be considered as to be the same as the arriving time of the other input. Thus,

the second and the further data cannot cause any conflicts because the restarting period is always

longer than the duration of the loop.

If the extra synchronizing delay effects were realized as delay operations with durations

corresponding to the required values of the delay effects, then the restarting period calculated by
RESTART may be changed, since the new operations would produce new busy time sequences.

A possible way of avoiding this effect is to realize the extra delays by connecting after each other

as many buffer registers as the required value of the delay effect. Thus, the required number of

buffers is p(i,h). In this way, the new busy time sequences cannot influence the restarting period

calculated by the algorithm RESTART, since the duration of each new operation is 1. In this case,
t(h)=1 must be replaced in minp(i,h), because the immediate predecessor of e(i) is always at least

one buffer register, if the extra delay effect is required. Calculating minp(i,h) with this
assumption, a negative or zero result does not always mean now that the synchronization problem
would not occur without extra delay effect, since at least a single buffer register has to be inserted

as the immediate predecessor of e(i). Otherwise, t(h)=1 would not be allowed during the

calculation of minp(i,h) and the result with the original t(h) value may be positive indicating the

synchronisation problem.

In Figure 11, the interval for p(3,2) is as follows:

maxp(3,2)=z(3,2)=9

minp(3,2=z(3,2)+1+t(3)-12=9+ 1+5-12=3

16

9 >=p(3 ,2)>= 3

A symbolic representation of the upper and lower bounds of the delay effect required for the
synchronisation is shown in Figure 13.
If e(i) is a loop-border operation, then a single buffer register inserted as the immediate
predecessor of e(i) would increase the loop duration by 1, but it would allow t(h)=1 for the
calculation of minp(i,h). Thus, the minimal required number of buffer register at the loop input is
minp(i,h)-1, the negative or zero value of which indicates that no buffer register is needed at the
loop input only the single one inside the loop. Generally, allowing a longer loop duration, a
considerable reduction may be obtained in minp(i,h) and so in the number of buffer registers at
the loop input. Obviously, this solution can be applied only then, when the longer loop duration
does not prevent achieving the desired restarting period for the whole EOG.
It is trivial that the inputs arriving from different conditional branches do not need any
synchronisation between each other, since they never can be active in the same restarting period.
(For example, the upper inputs of the MRUX operation in Figure 10).
The algorithm SYNC based on the above considerations is summarized by the flow diagram in
Figure 14. Besides the calculation of the intervals for p(i,h), the buffer representation of the
required delay effects is also illustrated. The meaning of the ASAP and ALAP constraints will be
discussed later in the chapter outlining the scheduling procedures. The only situation which is not
illustrated by the flow diagram is shown in Figure 15, assuming that more than one operations
inside a common loop require synchronization. For example, it may happen that calculating
separately the delay effects p(i,h) and p(mj), even the inequality minp(mj)>z(i,h) would hold, if
the representing buffer registers were placed before the loop. Thus, a new synchronization
situation occurs for e(i), if its input from e(h) is delayed to such an extent that its input from e(r)
requires synchronizing delay effects. Therefore, a repeated execution of the algorithm SYNC
cannot be avoided to overcome this difficulty. After the first run, the new arriving times are to be
calculated assuming the delay effect max(p(i,h),p(mj)) obtained to the loop input by this first
run. Starting with these new arriving times, the second run of SYNC always yields a correct

synchronization.

17

Start

i:KO

i:=i±1

Has e(i) at least two inputs to be synchronized? n

I

Calculating b(i)

n Calculating z(i,h) Y
z(i,h)+t(i)+t(h)<c(i)*R?

y To insert (at least) one n minp(i,h):=0
-buffer register between maxp(i,h):=z(i,h)
e(i) and e(h)?

minp(i,h):=z(i,h)+t(i)+2-c(i)*R minp(i,h) :z(i,h)+t(i)+t(h)+ 1-c(i)*Rmaxp(i,h):=z(i,h) maxp(i,h):=z(i,h)

y n
mmnp(i,h)>O?_

1

minp(ifh):=l

y n y n
Is e(i) a loop-border operation?] Is e(i) a loop-border operation?

S-Inserting one buffer Inserting one buffer Inserting all the Inserting all the
between e(i) and e(h) between e(i) and e(h) buffers before buffers before
and the others before and the others before the loop between e(i) between
the loop between e(i) between the ASAP and the ASAP and
the ASAP and ALAP the ASAP and ALAP ALAP constraints ALAP constraints
constraints constraints

y n
Has e(i) another input to be synchronized.---

Replace h with new value

'i~: ii)) [y [n

F i=N?

Stop Figure 14
The flow diagram of the algorithm SYNC
(N is the number of the operations in EOG).

18

Figure 15
::: Illustration for the synchronisation problem
: :- if more operation in a common loop need delay effects

19

5. Examples for applying the algorithms RESTART and SYNC

Example 1
The digital convolution algorithm is to be realized for 3 stages:

y(i)= wl*x(i-2)+w2*x(i-1)+w3*x(i),

where y(i) denotes the actual output (result),

wl, w2, w3 are the constant weights,

x(i) denotes the actual input data,

x(i-1) and x(i-2) stand for the input data received one and two restart earlier,

respectively.

The first step is to specify the elementary operations to be applied. Since inputs from the earlier

restarts are to be preserved, a shift register of 2 bits are convenient to use for each data bit. The

serial inputs receive the new data bits and the old data bits are obtainable from the output of the

second register bit stage providing that a single shift step are executed by each restart. Applying

multipliers and adders as further elementary operations, the EOG is shown in Figure 16. The

duration times are assumed as follows:

e(1), e(2), e(3) are multipliers with t(1)=t(2)=t(3)=20,

e(4), e(5) are adders with t(4)=t(5)=10,

e(6), e(7) are shift registers with t(6)=t(7)=l.

Since wl, w2 and w3 are constants, each multiplier can be considered as having only one data

input.

---I21 3 s2w22w

~~C3

mir F;,,= ý

210W

Figure 16

The BOG for the digital convolution algorithm

20

Following from the algorithm, the EOG can provide the first valid output only at the third start

(Restart2):

Start (RestartO): w3*x(l)+w2*?+wl*?=9.

Restarti: w3*x(2)+w2*x(1)+wl*?=?

Restart2: w3*x(3)+w2*x(2)+wl *x(1)=y(3)

Restart3: w3*x(4)+w2*x(3)+wl *x(2)=y(4)

etc.

Without any modifications, the EOG allows minR=31, after applying the algorithm SEPTUN,

minR=22 could be achieved. For the further reduction of the restarting period, the algorithm

RESTART must be applied.

Let the desired restarting period be R=5. The calculations according to RESTART are as follows:

Single buffer registers are to be inserted after each elementary operation except e(5) and multiple

copies are required for e(1), e(2), e(3), e(4), e(5). Each inserted buffer would be followed directly

only by a multiplied operation with unavoidable input buffers, therefore each inserted buffer can

be neglected in this case according to the algorithm RESTART. The output of each multiplied

operation is connected to the input buffers of an other multiplied operation, therefore t(h)=1 is to

be applied in each expression for the minimal number of copies:

c(1)=c(2)=c(3)=[(20+1+1)/51=5

c(4)=[(10+ 1+1)/51=3

c(5)=[(10+1+0)/5]=3

The modified EOG is illustrated in Figure 17. The synchronizing delay effects are to be caculated

only for e(4) and e(5):

z(4,1)=l
.:. -. 1>=p'(4,1)>=1+1+10_3*5=_3

z(5,3)=10

10>=p(5 ,3)>=10+1+10_ 3* 5 =6

It is trivial that the negative result for minp(4,1) means that no synchronization problem can arise

even without any delay effects on this input. Therefore, a negative value for minp(i,h) is to be

considered as zero in this case, since e(4) is a multiple operation and so the necessary input

buffers represent t(h)=1 for each copy. Thus, the delay effects calculated for e(4) and e(5) can be

symbolized in Figure 17 preceding the input buffers of the copies.

21

x 10
6
sh

I I w
7

22shI
2(l0 2(5)

t.•. Figure 17

The modified EOG of Figure 16 after applying the algorithm RESTART for R=~5

Example 2

The problem to be solved is to calculate the expression:
y(i+2)=y(i)+xl(i))x2(i)+SQRT((x3(i)3x4(i)),

4(lwherey(i+) is the actual output (result),

: y(i) is the output obtained at the previous restart
.:s •--:::xl(i), x2(i), x3(i), x4(i) are the actual input data.

Applying adders, multipliers and SQRT operations as elementary operations, a possible EOG is

shown in Figure 18. Let the duration times be assumed as follows:
e(1), e(2) are multipliers with t(5)=t(2)=20,

e(3) is the SQRT operation with t(3)=20,
e(4), e(5) are adders with t(4)=t(5)=.

p 222

whre-i1 is th culotu•rsl)

xl (i) x2(i) x3(i) x4(i)

0 0 0 2 0
2300 40

20

S~21'
S....10

2U 6 C'on

Figure 18

The EOG for calculating the expression y(i+ l)=y(i)+x 1 (i)*x2(i)+SQRT((x3 (i)*x4(i))

The buffer register at the output of e(5) is unavoidable, since otherwise e(5) would form the loop

alone, which is not allowed in EOG.

Without any modifications, the EOG allows minR=41. Applying the algorithm RESTART only

minR=12 can be achieved because of the recursive loop. The symbolic representation is shown in

Figure 19. The calculations are as follows:

Single buffer registers are to be inserted after e(1), e(2), e(3), e(4) and multiple copies are needed

for e(1), e(2), e(3) to achieve minR=12.
c(1)=c(2)=c(3)=[(20+1+1)/12]=2

No inserted buffers can be neglected at the output of the multiplied operations. The modified

EOG is shown in Figure 20. The synchronizing delay effects are to be calculated only for e(4):

21>=p(1,4)>=21+10+1-12=20.

23

xl (i) x2(i) x3(i) x4(i)

0 0 0 2 0
30 -40 A

20 20

3

"20 20202

. 40:::21 -40

-- r(5)

Figure 19

S~Symbolic representation of the recursive loop in Figure 18

;: :;1 xl (i) {x2i x3(i) , x4(i)

20 20: !:• ,.,

3(1) 3(2)
SQkrT SQRT7

_ 121/201 20 20

22 43

4-I.- L==63
10 FR=I 2

y(i-il1)

Figure 20

The modified EOG of Figure 19 after applying the algorithm RESTART for R=12

24

An alternative inital EOG for the the problem to be solved is illustrated in Figure 21. In this case,

the duration of the recursive loop is 20, therefore no shorter restarting period would be possible

than minR=21. Obviously, this solution for the EOG is not advantegous. The general rule is that

the duration of recursive loops should be kept as short as possible.

xl (i) x2(i) x3(i) x4(i)

20 20

:• •L y(ii)

4 3

Figure 21

An alternative EOG for the problem in Figure 18

25

6. Scheduling as arrangement of synchronizing delay effects

The above buffer representation of the synchronizing delay effects can be used advantageously

during the scheduling procedures, because the buffers can be considered as delay units movable

separately along certain parts of the data path without affecting the pipeline restarting period,

latency or synchronization. In this way, all possible situations can be simulated for the starting

times of the operations, since the arrangement of the synchronizing buffers determines the starting

time of an operation inside its allowed mobility domain. The data dependency determined by the

EOG, the restarting period and the latency are the constraints for the allowed mobility domain.

Two extreme cases can be defined as constraints for the mobility domain: each operation is

started as soon as possible (ASAP schedule) or each operation is started as late as possible

(ALAP schedule). For example, if all of the 9 synchronizing buffers are assumed between e(3) and

e(2) as shown in Figure 13, then this situation corresponds to the ASAP scheduling. Obviously,

the synchronizing effect would not be changed, if all of the 9 synchronizing buffer registers were
placed at the input of e(2). This arrangement would represent the ALAP schedule for the EOG in

Figure 11. Thus, the upper bound of p(3,2) can be used for calculating the maximal mobility of

e(2). Considering the minimal required value of the synchronizing delay effect calculated as

minp(3,2)=3, the corresponding 3 buffer registers would not represent the same delay effect at

the input of e(2) as they do between e(2) and e(3). The reason of this is that during the calculation

of minp(3,2), t(h)=1 has been assumed, which is not true any more if there is no buffer register

between e(2) and e(3). In this case, t(h)=2 has to be taken into consideration because of t(2)=2.

Thus, the new value for minp(i,h) transferred to the input of e(2) would be: 9+2+5-12=4. An

other possible arrangement could be obtained, if a single buffer register was left between e(2) and

e(3). In this case 2 buffer registers, i. e. altogether 3, would be enough at the input of e(2) for

representing minp(i,h), because t(h)=1 would be guaranteed by the single buffer register.

The algorithm SYNC provides always the ASAP schedule, if all the synchronizing delay effects

maxp(i,h) are placed between e(i) and e(h) or -in the case of recursive loops- at the loop input.

Starting from this schedule, the ALAP schedule can be obtained systematically by moving the

delay effects step by step from the output of each elementary operation to its inputs. This

procedure is to be started for the operations which produce the output data of the EOG and

continued successively upwards until the inputs of the EOG. During the relocation of the delay

effects, the latency of the EOG must not increase and the synchronization obtained as the ASAP

schedule must not be hurt. Two possible conflicts are shown in Figure 22.

26

Imax p i I) max hI

before relocation after relocation
a.)

hh
t(h) th

S!m• P j h)l • max P•'h

""a ::hm max p) max p(ih) - max p(jh)

t~)t(j)W

before relocation b.) after relocation
Suppose: max p(j,h)<=max p(i,h)

Figure 22

Relocation of synchronizing delay effects in the case of operations

a.) with collector property, b.) with distributor property

If an elementary operation has more than one input (collector property), then the delay effets

originating from its output must be repeated at each input. Otherwise, the synchronization would

be hurt. If the output of an elementary operation is connected to the inputs of more than one other

operation (distributor property), then different synchronizing delay effects may occur along

each connection. In this case, only the smallest delay effect is allowed to be transferred to the

inputs of the operation with the distributor property and this smallest value must be subtracted

from each delay effect occurring along the other connections at the output. Based on these

considerations, the ALAP schedule of the EOG in Figure 17 is shown in Figure 23, where only

the values of maxp(i,h) are symbolized, since the delay effects according to minp(i,h) would not

mean the ALAP schedule.

27

S~R=5

L 6

iy

i ' .Figure 23
The ALAP schedule for the BOG in Figure 17

II

Note that the delay effect 1 at the input of e(1) must not be pushed further to the input x of the

EOG, because influencing e(6) is not allowed during the relocation of maxp(4,1)=l. In other
words, the branching point at an input of the BOG is always to be handled as an elementary

operation during the relocation procedure. Obviously, the delay effects at inputs wi are only
.: -::formal, since these inputs are supplied with constant values which can be assumed to be available

permanently.

operation e(i) can be expressed as follows:

S~mob(i)=(al)b(i)-(as)b(i),
,! where (al)b(i) and (as)b(i) stand for the earliest possible starting time b(i) of e(i) according to the

ALAP and ASAP schedule respectively.

To schedule an BOG means to assign a starting time for each e(i) inside its mobility time domain

mob(i), i. e. between its ASAP and ALAP constraints.
With the buffer register representation of the synchronizing delay effects, the scheduling
procedure can be formulated as to arrange the buffer registers of number maxp(i,h) inside the

28

ASAP and ALAP constraints for each e(i) as it has already been indicated in Figure 14. Each

possible schedule could be obtained if starting with the ASAP schedule, the relocation procedure

towards the ALAP schedule were stopped ift every possible intermediate step for each inividual

buffer register of maxp(i,h) provided by the algorithm SYNC. Even by relocating a single buffer

register from the output to the input of an e(i), a new schedule can be generated. Therefore, every

possible arrangement of the buffer registers representing the synchronizing delay effects

maxp(i,h) establishes a different schedule for the EOG.

The aim of the scheduling in high-level synthesis is to ensure the best conditions possible for

covering the elementary operations by real resources called processing units or processors. This is

the allocation step of the synthesis and it is detailed in the next chapter. It is trivial, however,

already at this stage that the schedule of the EOG has a strong influence on the efficiency of the

allocation. For example, if the number and types of the processors are given in advance as

constraints, then the allocation means to cover the elementary operations by their proper disjoint
subsets, each of which is to be realized by a single processor. In this case, only such elementary

operations can be drawn together in common subsets which are never busy at the same time, since

otherwise timing conflicts would arise among the elementary operations sharing the same
processor. Obviously, the quality of the solution and even the solvability of this allocation problem

srongly depend on the schedule, since the concurrence of the elementary operations can be
modified choosing an other schedule. How to determine the most advantageous schedule for the

given allocation constraints, this is the problem to be solved by the scheduling methods. No

algorithms are existing for the optimal solution, since the problem is NP complete. However,
many practical approaches have been proposed in the literature for solving the scheduling
problem. The quality and performance of these methods can be judged only by comparing their

results obtained for characteristic benchmark examples. The basic concepts of these practical

approaches to the scheduling problem are detailed in a separate chapter after having been

introduced the most important constraints for the allocation in the next chapter.

29

L

7. Allocation

The aim of the resource allocation algorithm" is to decide which elementary operations are to be

realized by common real processors[5],[6]. It means that proper subsets of the elementary

operations are to be found under several constraints (cost, area, data path complexity, processor

type, etc.).

7.1. Covering of non concurrent operations
One of the possible strategies is based on the possibility that non concurrent operations may share

a common processor. It is trivial that the concurrence of the elementary operations is strongly

influenced by the length of the pipeline restarting period and the scheduling. The four possible

time overlapping (concurrence) situations between two operations are shown in Figure 24,

where s(i), s(j) and f(i), fa) denote the staring and finishing points of time of e(i) and e(j),

respectively and b(j)>b(i) is assumed.

sj) so)

S(i)

time

Duratio o-f- f

f(j)

ff~j

f(i) 4

• " The four possible situations for eoj) in overlapping with e(i)

S....Figure 24
Concurrence situations of operations

The finishing points of time can be expressed as: f(i)=s(i)+q(i) and f0j)=s0j)+q6j). In a pipeline
mode, the starting times of the operations e(i) and ea) can be expressed as follows:

s(i)=b(i)+k(i)*R and sj)=bj)+kf))R,

Swhere k(i) and kaj) are arbitrary non-negative integers representing the serial numbers of the
starts of e(i) and ea), respectively. If e(i) andf/or e(i) are multiplied and their numbers of copies

are c(i) and co), then the expressions for the starting times of their n(i)-th and nfj)-th copies can

30

be considered as generic forms including also the above expressions for the case

c(i)=c(U)=n(i)=nO)=l:
s(i,n(i))=b(i)+((n(i)-l+k(i)*ce(i))*R -and soj,noj))=baj)+((noj)-l+koj)*c(i))*•R,

where 1<=n(i)<=c(i) and 1<=n(j)<=c(j).
Note that k(i) and ka) represent also the serial number of the restarting period, but only if

c(i)=cO)=1.
The four overlapping situations can be characterized by the following inequalities:

s(i)<=s(j)<=f(i)

s(j)<=s(i)<=f(j)
Introducing the above generic expressions for the starting times,

(b(i)-b(j))/R<=K<=(b(i)-b(j)+q(i))/R

(b(i)-b(j))/R>=K>=(b(i)-b(j)-q(j))/R

can be obtained, where

K=nGj)-n(i)+k(j) * cGj)-k(i)*c(i). (1)
The left sides of both ineqalities are identical, therefore they can be substituted by a single
inequality as the necessary and sufficient condition for the concurrence of e(i) and eoj):

(b(i)-b(j)-q(j))/R<=K<=(b(i)-bj)+q(i))/R (2)
The operations e(i) and ea) are overlapping in time i.e. concurrent if and only if inequalitiy (2)
holds at least for one integer K satisfying equation (1). Based on this result, the necessary and

sufficient condition also for the non-concurrence of e(i) and e(j) can be expressed. Firstly, let
c(i)=c(j)=n(i)=n(j)=1 be assumed, i. e. neither e(i), nor e(j) are multiplied. In this case, any
integer K satisfying inequality (2) excludes the non-concurrece. The non-existence of such integer
K requires that the integer part of the left and the right side of inequality (2) must be equal:

(b(i)-b(j)-q(j))/R=INT+FR1
(b(i)-bO()+q(i))/R=INT+FR2,

where INT and FR1, FR2 denote the integer and the fraction parts respectively.

The assumption bj)>b(i) involves that the left side of inequality (2) and so, INT, FRI, FR2 are

all negative. Expressing INT from the above first equality:

INT=(b(i)-b(j)-q(j))/R-FR1

and substituting it in the second one:

FR2-FRI=(q(i)+q(j))/R

can be obtained. Since FR2>FR1 and both are negative, FR2-FR1<1 holds. Thus,
(q(i)+q(j))/R<l

or q(i)+q(j)<R (3)
can be written, as a trivial necessary condition for the non-concurrence. It expresses that the sum
of the busy times of e(i) and e(i) must be shorter than the restarting period, otherwise, the
overlapping could not be avoided. An other necessary condition can be concluded from the
requirement that the right side of inequality (2) must be negative:

31

(b(i)-b(j)+q(i))/R<O

or simplified:

b(j)-b(i)>q(i), (4)

which is also trivial, since the time difference between the starting times of e(i) and e(j) must be

longer than the busy time of e(i), if b(j)>b(i). Otherwise, the non-concurrence would be hurt.

However, inequality (4) alone is only a necessary condition of the non-concurrence, since it holds

also for the case b(j)=b(i)+R, which involves the concurrence of e(i) and eaj) in the second

restarting period. Such situations can be excluded by considering that FR2 must not be zero for

the non-concurrence, i. e. the right side of inequality (2) must not be equal to LNT, otherwise INT

would be the integer solution for K. Obviously, FR1=0 cannot occur, because FR2>FR1 and

both are negative.

Thus

(b(i)-b(j)+q(i))/R<INT

and introducing the expression for the common integer part of both sides of inequality (2):
(b(i)-b(j)+q(i))/R<Int((b(i)-b(j)-q(j))/R) (5)

If all of the inequalities (3), (4) and (5) hold, then they represent together the necessary and

sufficient condition for the non-concurrence in the case of c(i)=c(j)=1, because these conditions

are just sufficient for excluding the existence of an integer K solution in inequality (2).

If c(i) or c(j) or both of them differ from 1, i. e. e(i) or ea) are multiplied, then inequality (2)

always has integer solutions for K, because the length IL of the interval for K is always greater or

equal to 1 in this case:

IL=(q(i)+q(j))/R>=1,

since q(i)/R>l or q(j)/R>l holds, if e(i) or e(j) is multiplied. Therefore, the non-concurrence

would require that no integer solution of K satisfies equation (1) for any non-negative integer

values of k(i) and k(j) as variables. It can be proven that such values of k(i) and k(j) can be found

for each integer solution of K. It means, that e(i) and e(j) are always concurrent if at least one of

them is multiplied. For the proof, let inequality (2) be rearranged as follows:
(b(i)-baj)-qoj))/R-noj)+n(i)+k(i)*•c(i)<=kj)*•coj)<=(b(i)-boj)+q(i))/R-naj)+n(i)+k(i)• c(i)

Choosing a positive integer k(i), which makes both sides positive and introducing the notation:
A=(b(i)-baj))/R-noj)+n(i)+k(i)*c(i),

inequality (2) can expressed as

A-q(j)/R<=k(j)*c(j)<=A+q(i)/R

Obviously, the length of the interval for k(j)*c(j) is the same as it has been for K before the

rearranging. If IL>=c(j) holds, then there exists at least one non-negative kG) which satisfies the

above inequality, i. e. inequality (2). This condition can be rewritten as follows:

R*c(j)<=q(i)+q(j)
Let R*cj) be substituted by its upper bound derived from the calculation rule of co) according to

the algorithm RESTART:

32

(q(j)+l)/R+l>c(j) that is q(j)+1+R>R*c(j).

Since both sides are always integers,

q(j)+R>=R*c(j)

can be written

Thus:
q(j)+R<=q(i)+q(j) that is R<=q(i),

which always holds, if c(i)>l. At this stage, the proof is completed, since no constraints have been

assumed for c(j) and non-negative integer values for k(i) and k(j) can always be found in the

above way.

Note that it was assumed for the proof that the minimal numbers of copies have been applied for

the restarting period. Therefore, the copies of multiplied operations are always concurrent, if the

minimal numbers of copies have been calculated by the algorithm RESTART. In this case, it is

obvious that the multiplied copies are always overlapping each other in time and their new restarts

occur just after the end of their busy state at most one clock period later. This free time is not

enough for the non-concurrence with any kind of elementary operations, since even the shortest

busy time is 2 clock cycles.

Conditional branches in EOG need special considerations during the concurrence checking. If e(i)

and e(j) are in separate branches of the same conditional checking, then they are never executed in

the same restarting period, i. e. k(i)=k(j) never holds for the case c(i)=c(j)=n(i)=n(j)=1.

F.: Therefore, the solution K=O does not exclude the nonu-concurrence, since equation (1) can be

rewritten, as O=k(j)-k(i), which would hold only for k(i)=k(j) and it is impossible now.

Obviously, any nonzero integer solutions for K exclude the non-concurrence. It means that the

non-concurrence can hold only if the left side of the inequality (2) is greater than -1 and the right

side of it is smaller than +1:

(b(i)-b(j)-q(j))/R>-1 and (b(i)-b(j)+q(i))/R<+1, or rewritten:

b(j)+q(j)<b(i)+R (6)

b(i)+q(i)<b(j)+R (7)

Both above inequalities express the necessary non-concurrence conditions that the busy time of

one of the operations must be finished earlier than the execution of the other one begins in the
next restarting period. These conditions involve the most pessimistic assumption that the

conditional branches may alternate with the restarting periods. If c(i)=c0)=n(i)=n(j)=1 and both

of the inequalities (6) and (7) hold, then they represent the necessary and sufficient condition for

non-concurrence in the case of operations in separate branches of the same conditional checking,

because these conditions are just sufficient for excluding any nonzero integer K from the solutions

of inequality (2). If either e(i) or e(j) is multiplied, then the non-concurrence is not excluded only

if K=O is the only integer solution of inequality (2) also in this case. By adding both sides of

inequalities (6) and (7),

q(i)/R+q(j)/R<2

33

can be obtained, which can hold if only one of q(i)/R and qo)/R is greater than 1. It means that at

most one of c(i) and ca) can be 2 and the other must be 1, i. e. c(i)+c(j)<=3, provided that c(i)

and ca) are determined by the algorithm RESTART. In consequence, the non-concurrence of

multiple operations being in separate branches of the same conditional checking is possible only in

the cases c(i)=2, ca)=l or c(i)=1, ca)=2. This result can easily be explained as follows. If a

multiple operation has only two copies, then the busy times of each copies last not longer than the

end of every second restarting period. Otherwise, the algorithm RESTART would not calculate 2

copies. Thus, the time left after end of the busy time until the beginning of the next restart may be

enough for matching the busy time of a non-multiple operation from an alternative conditional

branch, provided that inequalities (6) and (7) hold. Since the most frequent turn of a conditional

branch is every second restarting period, this situation is sufficient for the non-concurrence.

Obviously, more copies would not allow the non-concurrence, because their busy times would

cover at least two restarting period and the pessimistic alternating turn of the conditional branches

would exclude the non-concurrence.
Based on the above considerations, the algorithm of the concurrence checking (CONCHECK) is

summarized by the flow chart in Figure 25.

Obviously, multiple copies of the same elementary operation cannot be covered by a common

processor based on the non-concurrence property. If, however, the processor library to be used

contains so called structurally pipelined processors, then this type of processors can cover

several copies of a multiplied elementary operation. Namely, structural pipelining means that the

processor is able to accept new data before completing the previous one. This is just the case, if

an elementary operation is multiplied and considered as a processor. Thus, multiplying the

elementary operations is equivalent to forming structurally pipelined processors. Therefore, using

this type of processors, the result obtained by the algorithm CONCHECK may be improved, since

the copies of the same multiplied elementary operations can be additionally covered by common

structurally pipelined processors.

It can be proven [8] that the concurrence is a compatibility relation between two operations.

Based on the above conditions, the compatibility checking can be executed for each pair of

operations. The maximal compatibility or incompatibility classes can be obtained by the well-

known algorithms [9]. For finding the proper subsets of operations to be realized by common

processors, a proper cover must be constructed with respect to the actual constraints for the

processors.

34

,t Srtn boj)>b(i)

y In
c(i)=c(j)=l?

n c(i)' 0)>32 Y

e(i) and eO) are
in separate conditional n

Y branches? n nq(i)+q(j)<R.9 Y

y n'-()+qoj)<b(i)+R? n _b(i)-bOj)>q(i)?Y

iY b(i)+q(i)<b(j)+R? n

n, •_•__~(b(i)-boj)+q(i))iR<Int((b(i)-boj)-qoj))iI

Concurrence

Non-concurrence

Figure 25
The flow diagram of the algorithm CONCHECK

if b(j)>b(i) is assumed

7.2. Topological cover of operations
Another strategy of allocation could be the splitting of the EOG into parts containing data-

connected operations. These parts specify the processors to be realized. The constraints for

forming the processors may be the number and complexity of the operations to be combined in

common processors or the simplicity of the data connections between the processors and in many

cases the regularity of the structure. As an example for the regurality, let the EOG of the digital

convolution algorithm in Figure 16 be considered. In Figure 26, this EOG is completed with the

dotted adder and shift register. The synchronizing delay effects are to be calculated for e(4) and

e(5) only. If the minp(i,h) values are applied, then no extra buffers are required, since

minp(4,2)=minp(5,3)=9+10+10-31=-2.

35

xOx W 3 07

p 20 21 ." "2 1I :,

1 A# 30 2* s

2 0 ,• 2 =*

.

30 0

Figure 26

-. Completion and splitting of the EGG in Figure 16

:.: It can be seen that the completions do not affect the restarting period, but makes the BOG look

S~symmetrical. Therefore, the separation of identical EGG parts becomes possible as indicated by

the lines crossing the EGG. Each part may form an identical processor as shown in Figure 27 with

the input-output specification as follows:

y(out)=y(in)+wi*x(in)
x(out)=x(in-1),

where x(in-1) denotes the input data occured one restart earlier, than the actual one.

: The regular structure consisting of such processors is illustrated in Figure 28 which is similar to

one of the systolic realisations of the digital convolution algorithm.[10]

i::.•i.•iFinding or establishing the symmetry of an EGG cannot be executed systematically without

intuition and trials. This task may become more difficult after the algorithms RESTART and

" ~scheduling, since the arrangements of extra delay effects and multiple copies of operations may

: eliminate even the inherent symmetry of the initial EOG. For example, the EOG in Figure 17

would be more difficult for establishing identical parts by completion outlined above and a

completion usually needs a reschedule.

36

e0,(i(in) wi x(in)

3030 21 s
20 2 1

P(i)

y•out) x(out)

S y(in) wi x(in)

P3
y(out) x(out)

FFigure 28
TheinSyalstolictureofalircesaton ofbthied dnigitlcnoutio alorth

w3I W2

• :: 'i,• 'y~i) -i x(in)

P3

y(Out , X(out)L

y(in) wi x(in)

W1

:. •,y(out) X(out)

Figure 28

Systolic realisation of the digital convolution algorithm

37

8. Multiple-process recursive loops

Recursive loops are usually considered to be unavailable to overlapped execution during the

scheduling phase of high-level synthesis. This is caused by the special nature of recursive

execution: an iterative algorithm may not be fed the next data before the final result of the
previous iteration is ready. As calculation of the next value requires a minimum of T(i) cycles

(T(i) is loop duration of loop i (defined as the sum of execution times for the operations in the

loop), a restart period under

min R=max(T(i)+1, i: every loop)

time cycles is impossible in a data path containing recursive loops as subsequent data would enter

slower loops before their iteration would end. (Outside recursive loops it is useful to measure

time in iterations, with one iteration being equal to the amount of time cycles it takes for the data

to finish one complete turnaround in the recursion.)

There are some notable exceptions, however, to the general case. In a special type of problems,

recursive solutions are needed to calculate values of identical functions for different processes.

In this case, as the operations inside the loop (core of the loop, from now on referred to as the

loop) may hold more than one data simultaneously as long as there is no collision between them.

In this way, the loop may process data with a higher throughput than the loop iteration would

"permit.

Such an example is the centralised control of robots using the computed torque technique.

Realisations of the computed torque technique require periodic calculations of a dynamic model

for the robot joints to deal with changes in the environment. For the scheduling phase, this

calculation may be run simultaneously with torque calculations, in a conditional execution branch

with a probability of 1/N if a calculation is required every Nth iteration.

As conditional execution would be a special problem in scheduling, the conditional branches are

treated as ordinary (non-conditional) branches in the graph.

Most of the published methods handle the recursive loop latencies (T+I) as the minimal value of

the restarting time (R). This constraint causes design methods to minimise the total execution time

in loops. The block approach treats recursive sections as parts of the data graph that are

elementary operations and so unavailable for optimisation.

8.1. Overlapped (pipelined) utilisation of recursive loops
Decomposing a loop sequence to real elementary operations makes it possible to tune the

behaviour of the loop itself
In the execution of a recursive loop, some parts of the loop are busy while the others are idle. As

execution of such a loop is strictly sequential, the busy state "propagates" along the data path in

time (Fig. 29.).

38

External data
fedback External and

feedback data
enters first
operation

_ • - Data enters
third
operation

Final result
Block leaves the
model loopSof a Elementary
recursive operations
loop of the loop Data propagation
loop inside the loop

Operations

inside the loop £Works on data of
1345 _ process1I

Works on data of0process 2
R

\ Produce
V Iinput and output

Data propagation in a loop
processing data from two
independent sources in an
overlapping way

Figure 29.

Idle and utilized times in an overlapped (pipelined) recursive data path

As time limits permit, it is possible to introduce new data (belonging to another process) to the

start 6f the loop that runs through the loop without data conflict with the previous data. This

overlapped execution exploits the inherent idle states of the loop. With such a structure, more

than one process may use the loop, if a strict schedule of data introduction is maintained. Such a

loop is referred to as a multiple-process (recursive) loop. Processes forward data to the loop

once in every T(i)+1 cycles (and they fetch data at the same rate) while the loop itself serves more

processes and so takes and outputs data at a higher frequency.

As in recursive overlapping (pipeline) mode data is put in the system in a mixed order to the loop,

a few definitions are needed. A complete iteration is equal to the time a process uses the loop,

i.e. between the cycle of sending data to the loop for the first time and receiving data from the

loop for the last time. An iteration is the time of one turnaround of the loop, i.e. time of all loop

39

elementary operations and the delay in the feedback; the number of iterations in a complete

iteration is referred to as loop depth or iteration depth, g(i).

A data packet or packet is data belonging to a process; a packet consists of a single set of input

values that starts the iteration (initial data) and the intermediate values that are present in the

system before the iteration is finished (iteration data). During iterative execution the process

needs to supply the initial value of the iteration and the recursion is finished when exit criteria are

met. During iteration the process need not supply more data since the next initial value arrives

from the previous iteration through the feedback branch.

As an example in the case of iterative solutions of non-linear equations, the f(x) value is checked

if it is in the neighbourhood of zero or not. In a well-known solution method (tangent method) a

non-zero f(x) moves the x (initial) value to another x' where f(x') is hopefully smaller in absolute

value than f(x) so the iteration improves the quality of the x value. The new x' is found as the

intersection of the x axis and the tangent of f(x) in (x, f(x)). This algorithm may result in an

oscillation deadlock between two suitable points (see Fig. 30.). It is clear, however, that the

process needs to supply only one value (the initial value x), as all the following x values are the

feedback of the previous x' value.

'-•Y (x(2), y(2))

x(1)-y(1)/f'(x(1))=x(2)
x(2)-y(2)If'(x(2))=x(1)

Figure 30.

Oscillating states in an iterative solution of an equation

Another type of recursion is where both the feedback and the process supply data. Such a case is

a circuit that realises exponential averaging on a given input sequence. This may be described with

an equation

40

y(i) = y(i-1) + a * (x(i) - y(i-1)).

It is obvious that this structure depends on both the previous output (y(i-1)) and the current input
(x(i)).

A multiple-process loop must be properly synchronized so that

1) data exiting the loop and returning to the loop input must meet the next corresponding

input data and

2) no data overrun occurs inside the loop i.e. the structure of the loop must be available for the

desired restart period.

By using multiple-process recursive loops, we make possible for separate processes to share the

same resources in such a way that the recursive section of processes is realised only once. Every

loop features a receptor element as its first operation, which handles feedback from the previous

iteration and receives new data from the process.

To tune the loop and to guarantee proper execution the previous and the new data of the same

process (the first fed back from the loop output, the second arriving to the loop receptor from the

outside of the loop) must arrive in the same time to the receptor element. This means a

synchronisation problem in the transfer sequences connected to the loop (external

synchronisation) and an additional synchronisation inside the loop (loop scheduling). Since the

external synchronisation is loop dependent, this problem will be discussed after the classification

of the recursive problems. As the basic synchronisation tool is the delay (buffer), a recursive

structure optimised for pipelined execution is likely to execute slower than the non-pipelined loop.

This speed loss may be small, especially if loop execution time much greater than 1, as the buffers

cause a latency increase of 1 each.

8.2. Loop scheduling
It is obvious to discuss the scheduling problem for the easiest case, when the whole elementary

operation graph consists of one loop, therefore external synchronisation is eliminated. In this

structure T=T(1). It will be assumed that the graph contains only one receptor element at the

beginning of the recursion. The decision whether the data must stay in the loop for another

iteration or the recursion has finished will also be made by this receptor element (so the loop shall

behave like a "test-before" construction, like a WHILE instruction in high-level languages).

To be able to schedule other types of loops, they must be transformed to "test-before"

constructions. A REPEAT-UNTIL loop in Pascal may be transformed to a WHILE in general like

from ...

Repeat

Loop Instructions;

Until (Condition);

we get

41

Loop Instructions;

While (Condition) Do Begin-

Loop Instructions;

End;

Another possible solution is the manipulation of the loop condition:

var LoopCondition;

LoopCondition:=TRUE;

While (LoopCondition OR Condition) Do Begin
Loop Instructions;

LoopCondition:=FALSE;

End;

which solution guarantees that the loop always runs for its first iteration, yet it is a test-before
loop. The second solution is preferred as it does not duplicate operations in the graph.

The same is usually possible with FOR type loops of C and Pascal. The loop execution condition

should be connected to operations in the loop, otherwise the loop is infinite or never executes,

which are not practical recursive cases.

The loop is considered to be able to handle the data of N processes simultaneously. This means

that the N+1. data arriving to the first receptor will be the next fresh data of the first process. To

avoid a data synchronisation problem between the feedback of the loop output (initial value of the
next iteration) and the new data, the loop duration (T) should be an integer multiple of the restart

time (R):

T = (N + 1) * R
As T is a function of R and N values that are given (set by the problem and/or hardware limits),

the equation will hold just for special cases; otherwise we have to solve the synchronisation

problem inside the loop. To solve this problem the difference between T and R must be realised as
additional delay inside the loop. In this way the expression will be modified:

T' = T + p = (N +1) * R
where p is the number of the inserted buffers (delay elements). The number of inserted buffers is

determined by 2 factors:

p = p(s) + p(f)
Scheduling the loop for the aimed restarting time (calculation of p(s)): for this problem

any suitable scheduling method may be used to tune the opened loop. p(s) is the sum of

the number of the buffers inserted to the places where the transfer scores make it

necessary and the buffers are inserted before the multiplied elements.

42

Synchronisation between input and feedback of the loop (calculation of p(f)): p(f) may be

expressed as

p(f) = (N + 1) * R - T - p(s)

where T + p(s) < (N + 1) * R.

In a system where

T + p(s) > (N+1) * R

the feedback of the system will be slower than the system input (i.e. the external data source) and

this must be taken into consideration when designing the external synchronisation. In this case the

feedback must not be further delayed so p(f)=O is used.

8.3. Classification of recursive problems
Data propagation properties may be classified as one of three main classes based on the number of

iterations. The number of iterations a packet spends in a recursive loop (loop depth, g(i)) is either

a finite (constant or variable) or an infinite value.

1) Finite loop depth, variable number of iterations

Some problems iterate for a variable number of times before their data exits the loop. These

applications should finish within a finite number of iterations, otherwise they are unavailable for

real-time usage. To prevent this infinite iteration, the system should be equipped with a watchdog

mechanism that finishes the iteration after a pre-set turn-around time, regardless of system state.

(Infinite number of iterations is usually a fatal system error, for example a non-linear system

approximation stuck in an oscillating set of states.)

Iterative solutions of differential equations are remaining in an iterative state for a finite number of

loop transitions, while the exact loop depth is data dependent; this kind of problems is a typical

example of variable-depth calculations. For these calculations no exact time requirement rule may

be given as the time needed to finish processing a packet is unknown at design time. The time

needed for the first packet to leave and a new initial data to be introduced to the iteration is

min(R * (g(k) * (N+I) + k-1), k:every process)

as packet k enters the loop in time cycle R*(k-1) and it must run through g(k) iterations, each

using R*(N+I) cycles. A similar expression tells the termination of the last iteration:

max(R * (g(k) * (N+1)+k-1), k:every process)

for similar reasons.

2) Finite loop depth, constant number of iterations

The method to treat special recursive loops may be applied to some applications that are not

strictly recursive. Such loops include the FOR-NEXT (ENDFOR) loops of high-level

programming languages. For our considerations these loop types are treated as special recursive

tasks, like a feedback system where the feedback branch is not really important in the structure.

43

The set of problems with a fixed, finite number of iterations is typical for the equivalent of FOR

loops (which generally run for a constant number of times). In the case of a fixed-order FIR filter
the number of iterations is related to the order of the filter, which is a constant based on the

nature of the problem.

To model this set of problems, we assume that the hardware has to put x initial data through the

recursive calculations. Every packet of these data stays in the loop for g(O) iterations. Non-

overlapping execution would finish with these data in g*T*x cycles as x packets must terminate
all their iterations (g), each of those lasts g*T time cycles. The loop is tuned for N-times

overlapping, and T=(N+I)*R.

As x is a large number, we may suppose that it is an integer multiple of N. (Otherwise the data

sequences may be padded with extra data to the nearest integer multiple of N).

The total time of overlapping (pipelined) calculations can be expressed as

(x/N) * g * (N+I) * R+N * R.

The result may be explained as follows: N data packets can be processed using a recursive loop

shared by N processes. Such a loop requires
g * (N+i) * R

time cycles for the first result to leave the loop; this is the first time cycle in which the loop is
available for new data. The next N-1 results are put out of the loop after that time cycle with a
period time of R, so subsequent packets may be fed to the loop with the same rate.
The system must process x/N-1 complete data N-tuples before the last packet. The last packet

features N-1 packets before itself so the total execution time is the sum of the execution times for

the N-tuples plus the time difference between the first and last initial data in the last data N-tuple

(equal to N*R time cycles),

(x /N) * g * (N+I) * R + N * R.

This total execution time is less than
g *T *x

(time required without loop overlapping). From the expressions we may decide whether it is

worthto apply this method or not. If the ratio of the execution times is less than 1, than the new

design solves the problem faster. To check this, the following feasibility inequality must be
(x/N) * g * (N+I) * R + N * R << g * T * x
As x is usually greater than 1 (the system is designed to process a large number of packets), for

the left side of the above inequality

(x / N) * g * (N+I) * R>> N * R

holds. As this is true, neglecting N*R from the left side of the feasibility inequality yields

R / T << N / (N+I).
This inequality shows that the more the restarting period is decreased against the loop duration,

the more efficient structure will be achieved and from the left side it can be seen that as more and
more data is introduced to the structure, the result can be more and more efficient.

44

3) Infinite loop depth

Infinite loop depth is presented in the case of continuous calculations. Robots, for example, need

to calibrate the dynamic model of their environment periodically, as long as the robot is moving.

In this case the overlapped loop execution is usually slower than the non-pipelined version as

modifying the loop for overlapping increases T (as it inserts buffers to the data path). Note that

the loop itself becomes slower during scheduling, but this leads to an increase in speed as it may

process more than one packet of data simultaneously.

One of the advantages is the reduced cost of hardware components, which is generally possible as

the nature of calculations is identical for every process. Absolute time gain is therefore expressed

in the terms of realisation costs, with a typical 3-process robot subsystem presenting only one

fully utilised loop instead of three, partially idle systems.

8.4. External synchronisation

External synchronisation will be illustrated on an example (Fig. 31.) which is used for data

filtering in voice-transfer processes. The graph checks for the predictability (and the

compressibility) of voice transfer, which may be used in monitoring digital compressed audio

transmissions and for regulating sampling time.

1.2 1.1

6/ 7

-* 6
rNWISQR 4

+ 3
2 13
12 2
CMP 1

Figure 31.

Data path of a system that monitors compressed voice transmission

45

The system is a model of the following:

1) Branch 7-8-9-10-11-12-13 is responsible -for the adaptive tuning of the sampling time. This

choice is based on the difference in signal energy:

Operation 7 (SQR) produces the square of the signal value x(k), while operation 8 takes another

signal value and squares it. The difference of these signals is compared to two values: to a

maximum in operation 10 and a minimum in operation 11. Should the difference exceed a given

value, operation 10 outputs a negative value as AT; operation 11 outputs a positive AT value if

the difference is close to zero. These to factors are added to find the final change in sampling time

in operation 12 (the method increases sampling time for a signal that does not change in a long

time and conversely increases sampling frequency if a signal contains high-frequency

components). The output of operation 12 is added to the previous sampling time in operation 13

to update the value.

2) Branch 1-2-3-4-5 is the approximation of the signal based on its previous behaviour. This is a

model which approximates the current value as if it would follow the average of previous samples.

(It follows signal behaviour based on a digital low-pass filter, comparing the result to the actual

observations (branch 14-15)).
3) Branch 14-15 measures the real signal. Its output is the slope of the signal, which is compared

to the slope of the approximation in operation 6.

This recursive algorithm contains all the possible data conflicts can arise. The synchronisation

problems are negotiated here in the time order which eliminates any iterative steps during the

scheduling process. In this example two different, but not independent loop exist (the first follows

the 1, 2, 3, 4, 5, and the second, the critical path follows the 1, 2, 8, 9, 10, 12, 13, 5 sequence). In

the first step the shorter loop must be tuned to the critical recursive path, inserting extra buffers to

the shorter path. In this example it means that 7 buffers must be placed before operation number

5, to the 5.2 part.

The s'nchronisation problem can be simply solved by several algorithms before elements 2, 3, 9,

10, 11, 12 and 15, handling the whole graph without feed-backs. The value of the T must be

"calculated after this step as the synchronisation may introduce delay elements to the critical

recursive path, which increases T.

Another class of the synchronisation problems is when the receptor element uses the result of the

loop (receptor 6 in Fig. 31.). In this case the algorithm is loop-dependent, because the result of

the loop is available in different time cycles depending on the type of the loop (see in section

"Classification of recursive problems").

This problem can be eliminated by inserting a shift register which can produce any of the stored

data in any time step depending on the control of the system. The length of the shift register is
determined by the worst case (the longest possible loop execution time). For the problems of the

46

first class (see in section "Classification of recursive problems") it modifies the structure of the

control logic. In this case the control logic picks up the suitable data from the shift register when

the recursive loop finished an iteration. "

I4

9. Control principles
The scheduled and allocated EOG represents the structural design of the data path only. A proper

control is required additonally to co-ordinate the elementary operations according to the EOG.

This control has to ensure the correct data dependence and timing not only between the

processors, but also inside the processors between the elemetary operations covered by common

processor. Data multiplexing and demultiplexing are also to be controlled for establishing the

required data connections between the processors covering more than one elementary operations.

It is also a control task to synchronize the starting points of time and to distribute the input data

for the copies of multiplied operations. The control models are classified basically as centralized

and distributed control path.

9.1. Centralized control path
Let the EOG in Figure 32 be considered as an example. Without detailing the sheduling and

allocation steps (the duration times are not shown), let the processors P1...P6 be assumed as a

result for the cover of the elementary operations as follows:

Pl:e(1),e(5),e(1O) P2:e(2),e(7) P3:e(9),e(3) P4:e(4) P5:e(6) P6:e(8)
xl x2 x3 x4 x5 x6

12 3

102

2- P1: e(1), e(5), e(1O)
P2: e(2), e(7)
P3: e(9), e(3)
P4: e(4)

y P5: e(6)
P6: e(8)

Figure 32

Example for covering the EOG by processors

48

In Figure 33, the internal structures of processors are illustrated only symbolically. The

elementary operations covered by a common processor are dotted, because they generally cannot

be separated any more in practical realisatiohs of the processor shared by them. Only due to this

symbolic separation is it allowable to neglect the data multiplexing and demultiplexing inside the

processors. Obviously, the buffer registers and the delay effects generated by the algorithm

RESTART and SYNC need also proper control signals in order to satisfy their timing constraints.

The centralized control path is basically a counter driven by the system clock. The actual

content of the counter determines the elementary operations and buffers to be started by

producing the proper start signals (stl...stl8). These output signals of the control path must be

generated in 1-from-n (one-hot) code by a modulo L counter. In non pipelined mode, each EOG

component has a single start signal, since it is started at most once during the time corresponding

to L, since each e(i) receives a starting pulse (st..) in the b(i)-th clock cycle. In a pipeline mode,

however, an elementary operation is started more times during L depending on the value of L/R.

In this case, each e(i) is affected by more start signals which can be considered as to be connected

in logic OR. (No such case is illustrated in Figure 33). The pipeline starting of each e(i) occurs in

every b(i)+k*R-th clock cycle, where k is an arbitrary integer.

Note that the serial numbering of the start outputs in Figure 33 does not always reflect the order

of magnitude of the counter content. For example:
(stll)<(stlO),

where the brackets stand for counter content generating the given start signal. It is trivial that e(9)

must be started by stl0 later than e(3) by stil according to the data dependence prescribed by the

EOG.

As it has already ben shown in Chapter 3.2, multiplied elementary operations need special control

considerations. In Figure 34, the internal control path is based on a modulo 2*c(i) counter and

the stil..sti2*c(i) outputs must be generated in 1-from n (one-hot) code also in this case. The

input'sti receives a pulse from the main control path each time, when the start of the multiplied

e(i) is required. Therefore, each sti pulse must generate exactly two subsequent start pulses at the
outputs stl...st2*c(i), the first one for the input buffer and the second one for the copy being just

in turn. This is the task of the of the count control unit in Figure 34.

49

Data path
st1 x21 031 1A/-
st2 io ,P

Control s4 t -- -' " - Y

path x4 r-

(Counter -st8,7 .__•:•

--.- _ :: Mod L) st x5 x6

st12 F 551-4
st13 0' P4

Sstl 1
: ~~stl15" P

stl 31

st18
F

4

t 50

stl

Internal
control path stil

for a multiplied sti2 ýL-
e(i)e~i) sti3

Counter sti4 ii_(1_ /(2) in iCi)

mod 2*C(i) _At 2'C(i)-1,___J

0t Count 0 Enable
Clock control unit Count

Figure 34

Control structure for multiplied operations

The main advantage of the centralized control structure is the simplicity of the implementation. In
most cases the realisation is a Johnson counter. Outputs of this counter may be directly

connected to the corresponding start signals. Since this kind of control path is relatively simple

and the model matches with the internal structure of most of the processors, the extra silicon area

occupation is small compared to data path operations. The centralized control has a disadvantage.
If the EOG contains a large number of operations, then the generated VLSI die will be huge and

the interconnection delays of the controlling signals cannot be neglected. This delay decreases the
highest operation frequency. It is especially true if the target technology is Multi Chip Module and

the design does not fit onto one die, since the I/O pads cause additional delay between the
functional elements. To avoid this problem, the distributed control structure should be used.

9.2. Distributed control path
The centralized control path can be eliminated by distributing the control task among the

elementary operations. The dataflow-like character of the EOG and the constraints for the

opreations (see Chapter 2) require that the start signal (sti) of an e(i) must be generated only then,
when every e(j), for which eo)->e(i), has already finished the operation. Thus, each elementary

operation must take part in generating the start signal of its next neighbourghs determined by the

data connections (edges) in the EOG. For this aim, the busy time intervals of the operations (see
Chapter7) can be represented by signals on extra 1-bit connection lines chained through the EOG

and accompanying each data connection. Such an extra edge as busy line can specify the busy

state of e(i) by the Boolean signal value B(i), as follows:
B(i)=1 if and only if e(i) is busy, i. e. b(i)<=t<=f(i), where t is the time parameter,

else B(i)=O.

51

Binl Bin2 BdBn
Clock 'Co t Clock .CIk stk/\ ..

10Bout St Bout St t-k

SBinl Bn

SBout S

Figure 3 5

Completion of the EOG with distributed control cells

To evaluate the busy signals from the direct predecessors and to generate its own start and busy

signal, these are extra tasks for e(i) in the case of distributed control. Therefore, each e(i)

supposed to be provided with an extra distributed control cell DCC as shown in Figure 35. The

required function of a DCC(i) is to generate the start pulse sti in the same timing as the

centralized control path does it. It means that the system clock must be taken into consideration

as time base, consequently, DCC(i) can be specified as a synchnronous sequential machine. The

specifications of all DCC-s are identical except the duration of Bout=1 which is determined by

the duration (execution) time of the operation. With the input-output notations in Figure 36, the

task of a DCC can be formulated as follows:

The cell waites for the falling edges on Binl and Bin2. After having received both of

them, the later one enables the next single clock pulse to the st output as sti. The falling

edge of this single clock pulse activates Bout=1 as B(i) which lasts until t(i) clock cycles.

Only these output changes can occur, but only then, when new falling edges arrive on

Binl and Bin2.

Such a simple sequential machine is to be realized to each elementary operation for performing

the distributed control yielding a mixed data and control path.

52

t

jock
DCC(i) Bi) 81v4 __,,__

Bin1 Bout
sti 8.

SBin2 St t0 Bn._ ___ _"

Clock af) Yt(i)

Figure 36

Specification of the distributed control cell DCC(i) as a synchronous sequential machine

After the allocation step, the processors may represent many elementary operations also with the

corresponding DCC-s. Obviously, the DCC-s inside the same processor can be realized only by a

single sequential machine, but the multiplexing and demultiplexing of its inputs and outputs, and
the different Bout=1 durations must be ensured.

If e(i) receives the input data of the system, then the inputs Bini and Bin2 of DCC(i) are to be
connected to the output Bout of the DCC belonging to one the elementary operations which
produces the result data at the end of the longest transfer sequence. In this way., e(i) can receive
new input data only after a time corresponding to the latency, i. e. it is a non pipeline mode. In a

pipeline mode, the inputs Binl and Bin2 of DCC(i) must be generated from outside as often as

e(i) is to be restarted with new system input data.
The above DCC principle could be applied for realizing the distributed internal control of
multiplied operations, but in practical cases, no simpler sulutions can be obtained, then the
counter-based control path in Figure 34, since the practical values of c(i) need a relatively short
counter.

53

10. Scheduling methods

During the course of high-level synthesis the .step directly following precise task description is

the phase of scheduling and allocation. This phase requires an exact description of the problem

using the data path, a graph representation of data dependencies and propagation in the

system. In this graph nodes are elementary operations, with the directed branches between

them indicating immediate data dependencies.

Some of the elementary operations are reading system data entry ports while others output

data directly to system outputs. The delay between reading the first system input and writing

the last system output port is system latency (L). Latency is equal to the execution time of the

longest sequence of branches present in the data path. It is usually expressed as an integer

value, the time divided by the time unit (a cycle). The minimum of latency in a given system

may be found by examining the graph. Note, however, that actual latency may be extended

with no limit by inserting delay to the data path.

The hardware unit is considered to operating by introducing data periodically so that new data

values are written to system input ports every R cycles, where R is restart time, expressed in

the same units (cycles) as latency. A restart time exceeding system latency means a low

utilisation for the system as there are idle cycles when the elements are not working at all. In a

non-overlapping mode of execution restart time is equal to system latency, data is fed to the

system when the previous set of output values has been calculated. With the exception of

simple systems a non-overlapping execution mode works with data propagating sequentially

through the data path, leaving elementary operations in an idle state until the arrival of the next

data packet. The ratio of these inherent idle cycles may be decreased using the pipelined

execution method.

The overlapped (pipeline) method of feeding data to a system is the case where restart time is

less than latency. It is possible to use pipelined execution in systems where the idle state of

processors propagates so that data belonging to the next data packet does not disrupt previous

output values before they are read from the output of the operation. The lowest "safe" restart

time may be found using the execution time of the neighbouring operations. As the pipelined

execution mode results in an increased utilisation, data throughput is increased in such systems.

Structural and functional pipeline are two expressions often encountered in scheduling, even

if their meaning is not always made clear. Functional pipeline refers to the system operating in

the previous way i.e. the data graph itself is used in a pipelined way, with the data operations

themselves executing without internal overlapping. In this method the graph itself serves as

source of the overlapping.

Structural pipeline presents another method to speed up execution. In this description

elementary operations may feature internal overlapping, so that they are composed of multiple

54

stages. An operation becomes available to receive data as it empties its first stage, so the

apparent execution time is less than the actual time needed to complete the calculations. As

this method uses operations that are complicated (i.e. they may not be called elementary),

structural pipeline is outside the scope of scheduling.

Note that operation multiplication works like structural pipeline, but it no longer refers to the

complicated processors as elementary. Superscalar design is frequently used to denote a

processor that is internally multiplied, usually like "n-way superscalar" for a processor that has

n parallel branches.

The Intel Pentium processor may be a typical operation (processor) in a complex data path as

its internal two-way superscalar structure is almost equivalent to a multiplied operation with

c=2. (This is only an approximation as the two execution paths in the Pentium chip (the U and

V pipes) are not completely identical. The difference is based on some of the complex

instructions that have to be performed by the U pipe.) From the user's point of view this

internal structure is visible as a CPU that has approximately twice the data throughput of a

similar 486 system, as the U and V pipes are similar to 486 systems in processing power.

10.1. Stages of scheduling and allocation

A system graph before scheduling is a functional description of the system where no properties

of the elementary operations are prescribed. The scheduling problem may be described as

finding the timing of elementary operations in such a way that the graph is suitable for a

feasible hardware realisation. The stage following scheduling is allocation, where the scheduled

graph is tested for feasibility. A graph is feasible if it may be built under without violating one

or more constraints set by the operating environment or manufacturing process. As scheduling

is using information based on some the knowledge of the allocation method, some allocation

steps may be performed before scheduling (initial allocation). Outer constraints of the system

are to be taken into account during this stage.

The usual types of constraints are latency, restart time and hardware. Latency must be kept

under a feasible limit in systems where delay between writing system inputs and reading system

outputs must be limited. Digital controllers used in process control are typical applications

where latency is a lower limit for controller dead-time, an unpleasant property of digital

controllers. As an increased value of latency presents additional problems to the design of

process control, it must not be increased over a feasible value. It is possible, however, to

design for a given latency value and find that the optimal solution does not use all the available

latency. (Fig. 37.)

55

71 e(i)

Delay (one cycle)

Unused cycle,
contains only delay

Figure 37.

Visual representation of a scheduling plan

Restart time is critical in applications where data must be fed to the system with a given

frequency. Data acquisition units are classified using frequency, not latency. In these systems

reduction of restart time to a lower value is a gain worth the increase in latency, staying under

a feasible value. Decreasing restart time usually increases latency, as it involves inserting delay

to the data path (unless the system was capable of running with the desired restart time).

Hardware limits are encountered in the design of systems where the realised hardware is

bounded in some way, be it power dissipation, silicon area or cost. Applications used in

extreme environments belong to this category. A data acquisition unit mounted on an

information-gathering satellite is a typical member of this class, as satellites are usually

designed to stay under power and mass limits.

The best solution is to compromise between the conflicting system properties with the

dominant bound given an edge over the others.

10.2. Initial allocation

After finding the graph representation of a problem the properties of the elementary operations

should be found. During the creation of the system graph only the functions performed by the

operations are fixed. It is the responsibility of the designer to find the physical properties of the

processors. As the actual representation of hardware capable of performing the desired

function depends on system constraints, selection of the module library must precede

scheduling. A bit-serial multiplier (slow, cheap but simple) may be a better solution in a flow

meter than a parallel model (faster, more expensive, requires more silicon) while a parallel has

the advantage of speed to be exploited in a PLC.

56

Choosing the module library fixes execution time for the elementary operations as the

capabilities of a given construction are usually known. Knowing the modules also enables the

designer to set up classes for the elementary -operations, which contain elementary operations

that may be realised in the same kind of processor. Addition and subtraction may be performed

in the same kind of processor with an additional control bit carrying the sign of one of the

inputs. It is the responsibility of the control hardware to supply the additional control signals

required to implement multiple operation types.

After finding the module library, the data graph may be described using the time frame of its

elementary operations. As the execution times of the operations are fixed by now, a unique

limit to the earliest and latest execution times of a given operation may be found. These times

are called ASAP (As Soon As Possible) and ALAP (As Late As Possible) values. The ASAP

value is the maximum of the length of data dependencies between the elementary operation and

system inputs (considered to appear at cycle 0), while the ALAP value is L minus the longest

operation sequence between the operation and the system output (Fig. 38.). Operations may be

started at any of the time cycles between their ASAP and ALAP times. An operation with its

ASAP value (set by its predecessors) exceeding its ALAP time (bound by its successors) is

violating the latency constraint of the system, and requires repeated calculation of the latency.

-- -P

6

70 0
3

45

-ASAP+ 0 0
ALAP 4

Delay Simplified
(one cycle) 1 Jnotation
(from for one
synchronization) 4 cycle of

e(i)
delay

Figure 38.

ASAP and ALAP values if L=7

57

1 5 66

2
L T.. ...

4igre39

ASAP ndSLL

proertes f te dthe dpnumerce ofly The first n atpssbesatn ccemycag

graph.Thicycln e in which fr (2) may bexrssed 2)as cangPn(h2 AA)dorAA
values f the berstao.Frtedise inreason ti easibet nrdc e fcret(u

asd ASAP andle maLA] vtalueys ardpoesrtibeso the guraph, thmey mrayme fanoueaind usingcte

propeTie ofd athes data deednies only.) The fisedt adelstcpossible sctualrprtingces mayg chang

frAn operation, dependingeua onlu its prdcSsor and APisuclckessr (ine insertingdelayto theedm

gAph) this heating ofy ntim frae m aybeeprsed wtotvlasin hoaltmnge cosrintte sA asndor ALAPec

lmt timesuwich. arem the actu dnodal bonaie ifthe time frame.duling sc hedulingathed ASiPe

gands (gaLAcyls mhreayl nth alwmnarys dpesribethen curen timedframe ofe ane complertion (sfinced

(SLmt)rl and Ltst LimitssTime (Lt) amroe use todscruibeteatulpoeris.Fi.3.

The operations with an equal ASAP and ALAP value form the critical transfer sequences of

the graph. Inserting additional delay to these paths is impossible if the system is to be designed

under a latency constraint.

58

10.3. Initial approximation of the optimal solution

Even if the composition of an optimal scheduling plan is unknown, it is possible to find the

result of an optimal set of SLT and LLT values, i.e. the minimum of hardware cost in the

: following sense:

Initial approximation is possible as the total number of utilised processors does not change if

an operation is delayed or brought forth (Fig. 40.). A load presented by an operation and the

processing power of a processor may be measured in units: one unit is defined to be one

S~processor s worth of processing power in one time cycle. This way an operation (which

S~always executes in one processor, as it is elementary and so may not be split) executing for t(i)

S~time cycles occupies

S.... .:: iit(i)* l

?-!:: .::iprocessing units as it uses the resources of one processor for t(i) cycles. N of these operations,

• executed simultaneously, would use

t(i)*N

S~units. It is obvious that the scheduling of an operation does not affect the total units needed to

i i: process the data as it depends on only the execution time, which does not change during

.- scheduling. Unit requirements of a given type of operations may be added to find the total
:• !-•?•number of units required to complete all the elementary operations of that particular type.

15. 5.

6.....6
'-@ ?2 1.....-

e(2) uses two cycle's Delaying e(1) does not
worth of processors, change the quantity of
during cycles I and 2. processors used by e(2).

It still uses two cycle's
worth of processors,
now in cycles 2 and 3.

Figure 40.

Processor utilization

The total load of a data dependency graph must be compared to the processing capacity

59

offered by the processors in the system. A processor, when built, is available to suitable
operations in the graph (those with an appropriate type) in all time cycles, i.e. between time

cycles 0 and L-1. N processors of a given tyle offer N*L units of processing power to be used

by operations.

During pipelined execution, time cycles are mapped to the 0..R-1 domain. As the pipelined

system accepts data every R time cycles, the units offered by the built-in processor capacity are
grouped so that a processor is considered to offer its capacity for R time cycles. N processors

of a given type offer a sum of N*R units during overlapping execution.

This way in the implementation stage, the built-in processor capability is equal to the number

of processors multiplied by latency (restart time for pipelined structures), as every processor

adds 1 cycle's worth of processor capacity to total system capability for every cycle in which it
is available. This must be equal to or greater than the sum of utilised units. Subtracting the
number of units utilised by operations from the total units in the implementation equals the
unused (idle, never utilised) units. This number may nbt be changed by altering the timing
values of operations (as we have already proved that the load of an operation (expressed in

units) may not change during scheduling) . The only factor that affects the number of these
unused units is the number of processors, which may be a non-negative integer only. Changing

the number of processors changes the number of available units with L or R.

Any solution wasting more than L (or, in case of pipelined execution, R) total units means it is
not optimal, possibly subject to iterative tuning of initial allocation and scheduling. This is
easily proven as if the number of unused units exceeds L (or R), decreasing the number of
processors by one decreases available processing power by L (or R) units, which still exceeds

the number of units needed.

Processors
#1 #2 Processor

66

"2' ...0 . 1 527

4

Utilized: 2+2=4 F" Utilized: 2+2=4
Available: 2"7=14 Unused Available: 1"7=7 Unused

As 10 units are wasted and 10>L=7, As only 3 units are unused,
only one processor is needed, and 3<L=7, number of processors

may not be decreased further.

This required a delay of one cycle
to be inserted before e(2).

Figure 41.

60

Finding the optimum for the number of processors for type 2 operations

Some scheduling algorithms (notably the hardware-constrained list scheduling) generate a

solution that exactly matches the prescribed hardware utilisation properties. The disadvantage

is the increase of latency, which may be checked only after the maximum is reached.

For these algorithms, an iterative process may be used that starts off with the optimal number

of processors for all of the processor types, relaxing the bound until the latency requirement is

met.

10.4. Scheduling

Following the phase of initial allocation the graph to be scheduled may be described using a set

of ASAP and ALAP values, a description of processor properties and classes. Solution of the

scheduling problem removes any degree of freedom in time domain from the graph by

prescribing a fixed starting time for the operations. This transformation strips any mobility

from the elementary operations while pre-processing the graph to be available for a successful

allocation, resulting in an increased utilisation of the hardware.

Finding the optimal scheduling plan is unfortunately an NP-complete problem. As the optimal

solution of NP-complete problems may be found in a time that is increasing as an exponential

function of system complexity, a suitable polynomial-time replacement is needed. Solution

methods based on heuristics are used to achieve a scheduling plan near the optimum in less

time.

Integer Linear Programming (ILP) based methods transform data dependencies and processor

properties into linear systems of equalities and inequalities. Solution of these systems may be

performed by an external solver package or internal resources. As ILP-based solutions are

using external resources during the calculations, the time required to complete such a task may
not be easily forecast. ILP-based scheduling may be extended to handle pipelined execution.

List scheduling is a collection of fast but not optimal methods. Elementary operations are

scheduled based on a priority function, with the operation with the highest priority being

scheduled before the others. The priority function is generally based on operation mobilities,

i.e. related to the urgency of the given elementary operation. List scheduling usually ignores

any special properties of the graph (i.e. pipelined execution) and produces a fast, but not

always optimal solution. Execution time is a low (first or second) order polynomial function of

graph complexity.

Force-directed scheduling is a scheduling method with a polynomial (third order) function of

graph complexity. This scheduling algorithm schedules operations based on concurrence as a

function based on the utilisation of individual processors. As a constant utilisation is optimal,

61

force-directed scheduling tries to balance the number of concurrent operations, with a cost

function based on the deviation from the ideal concurrence. This cost function resembles the

force exerted by springs based on Hooke's Law (hence the name force-directed).

Force-directed scheduling is a modular method, easily modified to suit special needs. Possible

extensions are optimisation for bus width, transfer (memory), conditional branches and more.

All the modifications are introduced as additional components of the cost function.

10.4.1. Scheduling using Integer Linear Programming (ILP)

A possible way to solve the scheduling problem is to transform data dependencies to equalities,

which in turn may be solved using any software or hardware designed for the task. As a solver

may be fine-tuned for the ILP problem, such a solution needs to concentrate only on the

"scheduling process itself

An ILP-based scheduler uses a set of linear equations and inequalities to describe system

behaviour. The variables are related to the starting times for the elementary operations, with

other constants and variables representing external constraints. Additional equalities are used

to make up data dependencies, inhibit violations of time frames and finally to define a cost

function needed to qualify results.

10.4.1.1. Equations for an ILP-based scheduler

In a given graph, after calculating the s(i) ASAP and l(i) ALAP times for elementary

operations, all operations (from 1 to N) are assigned a number of binary variables, x(i,t) in such

a way that x(i,t) is 1 if the i. operation is started in the t. time cycle, 0 otherwise. The system is

considered to have a latency of L, operating with a restart time of R. A maximum cost of D

serves as an upper limit for realisation. J is the number of processor types, with a weight factor

of wo) belonging to the j. processor type. The weight values are relative values, presenting a

way to describe the quality of a given solution. The number of processors of type j to be built

into the system is MO), operation e(i) uses a processor of type j(i).

As we permit a different execution time for each of elementary operations, the i. elementary

operation started at the t. cycle (x(i,t)-1) requires t(i) time cycles to complete its task. For this

reason, the processor in which e(i) is executing remains inaccessible for new data during the t.

(t+t(i)-l). time cycles. Any data arriving to processor input ports ruins the calculations. To

describe the occupied state of the processor, an operation started in cycle T is considered to be

occupying one processor for every t>T time cycles s. t. x(i,T)=l and t-T<t(i); this is the

definition of x'(i,t)=(1:t-T<t(i)), otherwise the value is 0.

62

Our sets of equations are constructed in the following way:

a) All elementary operations must start in one of their respective time frames, so

sum(x(i,t): s(i)<tal(i))= 1.

This property removes a number of trivial zero variables (x(i,t) outside the time frame),

reducing system complexity.

b) All operations are started in such a way that the number of simultaneously used processors

of type j does not exceed MO), for every possible j: 1lj<J. This is described using a set

of inequalities: sum(x'(i,t):j(i)=j)-M(j)__0, where x'(i,t) refers to the utilisation of the

processor executing operation i during the t. cycle, corrected based on t(i). t scans time

cycles 0 to L-1.

c) Data dependencies are not violated, so all operations are started at least t(i) cycles before

their direct successors. In other words, for every e(a) and e(b) pair such that e(a) is a

direct predecessor of e(b):
sum(t*x(a,t): s(a)___t___l(a))-sum(t*x(b,t): s(b)_-<t:!l(b))<0.

As data dependencies are transitive, it is not necessary to set up inequalities for indirect

connections.

d) Total cost of the system does not exceed its allowable maximum:

C=sum(Mj)*wj): 1_jJ)<_D.

Point a) yields a set of N equations, b) leads to a set of J*L inequalities, c) results in an
inequality for every direct connection, d) presents an additional inequality. As the number of

variables is equal to the total cycle number of the time frames, number of inequalities is rapidly

increasing as a function of N.

ILP-based solutions may be extended to handle pipelined execution mode by modifying point

b) and d). Instead of MO) we introduce the overlapping utilisation M'(), which is equal to the

simultaneously used processors in the case of pipelined execution. These numbers may be
generated by folding the x'(i,t) utilisations so that they represent the periodicity based on R, i.e.

an operation started in t=R adds one to the utilisation in time cycle 0. (All cycles are

transformed to the range 0_<t<_R-1.) This modified set is composed of inequalities of the

following type: sum(x'(i,t):j=j(i))-M'(j)<0, one for every pair ofj and t values such that lj_<J, 0

<t<_R-1.

The virtual folding of the time domain may be performed by grouping inequalities belonging to

time cycles in such a way that the inequalities of cycles i and j are added if and only if i and j

63

are folded to the same cycle i.e. i mod R-j mod R. This reduces the number of inequalities to
j*R, which is a significant decrease of system complexity, especially for slow systems (R<<L).

To calculate cost we simply modify d) so that

C=sum(M'(j)*w(j): 1__j<_K)<_D.

After composing the inequalities, the optimal solution must be found. This solution consists of

binary numbers for x(i,t), which in turn prescribes the optimal starting time for operations.

10.4.1.2. Disadvantages

ILP-based scheduling depends on an external system to solve the sets of inequalities. It is not

usual to arrange a solution in the scheduler itself While an external package may be highly

optimised for the task, the time needed to find the optimal solution may not be predicted. It is

feasible, however, to reduce the number of variables based on heuristics, which is a generally

accepted method to speed up calculations. No universal rule exists, however to perform such a

speedup. Hardware realisations are better defined as neural networks (Hopfield), as these are

capable of solving linear programming problems.

10.4.2. List scheduling

List scheduling is a collective name for simple methods using relatively small calculating power

based on primitive priority functions. Total number of steps to perform list scheduling is

proportional to the first (at most second) power of system complexity. Elementary operations

are put into a list based on their priority value, with the scheduling process scanning the time

domain. Conflicts (contradictions caused by identical starting time for operations) are dealt

with based on the priority function, with the operations having lower priority being delayed.

This delay is equivalent to a single cycle performed by a buffer.

As the main execution order of list scheduling is scanning in time domain, list scheduling is not

sensitive to the internal order of elementary operations. List scheduling requires a suitable

priority function, which is based on the mobility of the operations. The mapping of mobility to

priority should be (strictly) monotonously decreasing so operations with a lower mobility are

at an advantage during scheduling. The easiest way to transform mobility to priority is to

subtract it from a suitable positive integer value.

A useful extension of list scheduling is the case of resource-bound list scheduling. This

algorithm penalises the violation of hardware cost constraint. A suitable priority function is

based on a first-order decreasing function of mobility, with an upper limit set by operation

concurrence. This composite function does not deal with a distribution not violating system

constraints while it penalises the usage of additional hardware. An unfortunate disadvantage of

64

resource-bound list scheduling is the iterative way to find optimal hardware constraints

(starting from the optimum, relaxing bounds until fulfilling latency condition).

List scheduling in itself does not involve analysis of pipelined structures. Multi-cycle
operations may be scheduled using these algorithms, using a structure similar to look-ahead
prediction. A possible solution of this problem is the introduction of long delay, lasting long
enough so the placement of the delayed operation is not tried before the processor occupied by

the winning operation is freed.

List scheduling depends on the internal resources of the scheduler to solve its problems. Digital

hardware implementations are possible.

10.4.2.2. Disadvantages

List scheduling, being the offspring of a simple function is a very fast algorithm, terminates in a
short time with a (usually) non-optimal solution. Compared to ILP-based scheduling, the total
execution time may be approximated by an upper bound. The results received after list
scheduling must be checked for activation and idle time. (If optimal hardware requirements are
not found before.)

As list scheduling presents a priority function based on local relations (i.e. mobilities), it
produces a local optimum for all of the time cycles, which in turn may yield non-optimal

pipelined utilisation.

10.4.2.3. Execution of general list scheduling

A typical list scheduling algorithm scans data propagation in the system in time domain. It
requires the latency and complete description of the graph, calculates ASAP and ALAP times
and constructs the priority function. The SLT and LLT values are started as ASAP and ALAP
cycle numbers. List scheduling simulates a straightforward method of delaying operations,
which is performed by fixing high-priority operations and delaying others (i.e. increasing their

SLT values).

The scheduler itself runs a loop for every time cycle, finding operations that could be started in
the current time cycle. In the case of competition, operations are given advantage in decreasing
order of priority. As this method starts with a fixed value of system latency, it is suitable for
scheduling systems operating under an execution time (latency) constraint. Most of the
practical applications fall into this category.

All the operations eligible for immediate start (winners) are started (i.e. their SLT and LLT
values are set to the current time value), while other competitors (the losers) are delayed. This
delay is usually performed by increasing their SLT. A delayed operation has got its priority

65

function value increased as its LLT time does not change (i.e. remains equal to the ALAP

value) while delaying it increases its SLT. As the priority function is highest for the operations

with the lowest current mobility, a general list scheduling method preserves the latency of the

system. (It is impossible to win over an operation if it is currently in its ALAP cycle, as it

would require a negative mobility.) Elementary operations that are affected by delayed

operations through a data dependency are also subject to delay so data dependency relations

are not violated.

Checking pipelined utilisation must performed for systems operated in overlapping mode. The

local nature of the list scheduling does not enable the scheduler to directly check for violations

of hardware constraints in an easy way. A possible solution is to employ back-tracking, but this

makes the list scheduler slower.

Milo

______ Unit #1 is: ied

A pipeline-aware list scheduler increases L
so that the overlapping operations fill

•.•=.•..•unused processor capacity

S......Figure 42.

List scheduling a pipelined structure

10.4.2.4. List scheduling under a hardware constraint

Systems that are to be realised under a fixed cost of hardware components may be scheduled

using a modified type of list scheduling. This algorithm does not pre-set the ALAIP (and thus

the LLT) values of elementary operations, so total latency must be checked after fixing the last

operation in its place. This hardware-bound scheduling method scans time cycles in increasing

order, with the elementary operations checked for competition based on their SLT times. As

long as the total number of processors required to start all operations with their SLT values

66

equal to the current time cycle stays lower than processor number constraint, they are all

started in the current time cycle. In case of violation, the excess must be delayed. There are no

generally useful rules to select the operations to be delayed, but a comparison of total

execution time following a given operation may help. After scanning the data dependency

graph the final value of latency may only be checked, but not modified.

List scheduling is capable of finding an exact match for the prescribed hardware constraints if

possible. A feasible balance between hardware costs and latency must be found. Due to the fast

execution of list scheduling, an iteratiye solution is not a problem.

As with the general list scheduling algorithm, list scheduling under a hardware constraint is

incapable of dealing with pipelined execution in detail.

10.4.3. Practical applications of list scheduling with hardware constraint

A typical application of hardware-constrained list scheduling is code generation for a RISC-

based processor. (Up-to-date CISC processors employ the same speedup technics, so an Intel
Pentium or P6 (Pentium Pro) is considered to be RISC in this context.)

Most RISC processors use an internal multiprocessor structure, i.e. instructions are fed to
execution units (we use this name to avoid confusion with processor, which now refers to the

RISC CPU itself). Units are the resources that must be properly utilised as they may work

simultaneously. A PowerPC 604, for example, contains three integer units, a floating-point and
a load-store unit. Two integer units are single-cycle (i.e. basic operations: compare, add, rotate
etc.) while the last is a multiple cycle unit performing integer multiply and divide instructions.

The floating point unit houses instructions that all have a latency of three cycles. Load-store is
used in address generation.

The 5 execution units are fed by an instruction fetch stage which scans program memory for

instructions. It is capable of supplying maximum 4 instructions during one cycle, so in an

optimal case a program sequence is executed in 1 cycle for every 4 operations it contains.
Trying to load data to a unit that is occupied is called a data overrun; such an operation is
prohibited and results in a delay which ends when the unit becomes available.

In examples S refers to a single-cycle, M# to a multi-cycle instruction of # cycles, F# to a
floating-point instruction (length is # cycles) and L to a load-store operation. (!F) refers to the
situation when the full fetch capability (4 instructions/cycle) may not be fully used due to data

overrun in the F unit (in this case, the next instruction must wait). Units of type F, L and M are

singular, while S units are built twice.

A sample program consists of four branches, which feature operations in memory that are in a

prescribed order:

67

Branch 1 is L-S-S (operations 1, 2 and 3)

Branch 2 is M3-F2-M3-L-S (operations 4,.5, 6, 7 and 8)

Branch 3 is S-L-S (operations 9, 10 and 11)

Branch 4 is L-F2-S-S (operations 12, 13, 14 and 15)

The operations of a branch must follow each other in strict order in memory, but there is no

prescribed order of the branches. They may even be stored mixed.

A program of the following composition would be executed in 6 cycles (indices refer to

operation numbers):

M34F2 5L1 S2 S3 L 12 S9 F2 13 L10 S 14 S 1 5M36 S 11L7 S8

which sequence would be fed to the processor as

(cycle 0) M34 -F25 -L1 -S2 ends as the 4-instruction fetch frame is exhausted.

(M3 keeps on executing in cycles 1 and 2, F2 in

cycle 1.)

(cycle 1) S3 -L12 -S9 (!F) ends as the following instruction is of type F, which

causes a data overrun in the F execution unit. (It may

not be loaded as the F unit did not yet finish its

previous calculations)

(cycle 2) F2 13 -L10 -S1 4 -S1 5 ends as the 4-instruction fetch frame is exhausted.

(cycle 3) M36 -S 1 1-L7 -S8 ends as the 4-instruction fetch frame is exhausted.

As the last M3 instruction keeps on executing in cycles 4 and 5, the total execution time

(reading the code to the processor and executing the program) takes 6 cycles.

A similar program, which fulfils the branch conditions is executed in 8 cycles:

L1 S2 S3 S9 M4F2 5M36 L7L10 L 12 S 11F2 13 S8 S1 4 S1 5

as the fetch happens like

(cycle 0) L1 -S2 -S3 (!S) ends as the next instruction is an S, which may not be

68

fetched as it causes a data overrun

(cycle 1) S9 -M34 -F2 5 (!F) ends as the following instruction is of type M, which

causes a data overrun in the M execution unit. (The

next M operation may be fetched in cycle 4 as the M3

started in this cycle finishes in cycle 4.)

(cycle 4) M36 -L7 (!L) data overrun in unit L finishes cycle

(cycle 5) L10 (!L) no more instructions may be fetched, data overrun

occurs in unit L

(cycle 6) L12 -S 1l-F2 13 -S8

(!S) data overrun in unit S

(cycle 7) S 14-S 15 input sequence is finished.

In addition to scheduling issues (i.e. prescribing the execution order of data-independent
instructions) common programming technics include operation type swapping. A common
usage of this (often used during creation of computer demos) is to transform some of the
floating-point operations to integers or vica versa. This method enables the programmer to
feed the processor with a homogenous mixture of different operation types, which increases
data throughput as it decimates data overruns (a common disadvantage of similar operations).
This algorithm is outside the domain of scheduling, as it may only be modelled using a
transformation of the data graph. (It swaps the operation type and execution time of

operations.)

A PowerPC 604 microprocessor could be described as a system with a maximum of 2 type S
and a. maximum of 1 each of type L, M and F processors. Execution times are 1, 1-3, 3 and 2
respectively. After finding the optimal latency for a given instruction sequence, the actual
latency must be calculated (based on the fetch limit of 4 instructions every time cycle).

Operations that are not optimised for the given processor structure are likely to cause data
overruns (referred to as pipeline stalls) often. This is the reason why most programs for Intel-
based PCs feature special code for Pentium processors.

As some of the speed improvement of CISC processors is based on the increase in execution
unit numbers (the Intel Pentium features a two-way internal pipeline (two-way superscalar

structure), the Pentium Pro a similar three-way superscalar structure)), care must be taken for
programs to produce code that is subject to optimisation. The Pentium Pro, for example, was

optimised for 32-bit-based input streams; the Windows 95 operating system of Microsoft
contains enoughl6-bit code to disable its internal pipeline. As the 100 % speed increase

69

between a Pentium and a Pentium Pro is based mainly on the improvement of pipeline

properties, Windows 95 runs slower on Pentium Pro-based systems than on Pentiums.

As the execution pipes of the Pentium processor are not identical, a regular sandwich-like

program structure is needed to keep the processor occupied without stalls. This structure must

be crafted carefully so that the program code contains a simple instruction following a

complicated one. Simple instructions fit to the V pipe of the processor while the U pipe works

with the complicated one, thus making an extra cycle unnecessary. A suitable model for this is

the U pipe being a general processor. (capable of holding any kind of operations) while the -V

pipe is a processor that may be used only for executing single-cycle operations.

"10.4.3.1. Loop unrolling

Another typical usage of scheduling is loop unrolling, a trick in common usage. This method

is useful in the core of time-critical applications, which are usually executed millions of times.

The increase in throughput is the result of a homogenous, and therefore easily optimized code.

The following code fragment (using Intel assembly for a numeric coprocessor)

loop:
fld [esp+8]
fmul [ebx+eax*4]
fadd [ecx+eax*4]
"fstp [ecx+eax*4]
inc eax

cMp eax,ebp
jle loop

is the trivial solution to a section of Gaussian elimination. This code offers nothing to optimize

as the small number of operations makes it difficult to tune anything. Expanding the loop 3

times yields

loop:
fld [esp+8]
fmul [ebx+eax*4]
fadd [ecx+eax*4]
fstp [ecx+eax*4]
fld [esp+8]
fmul [ebx+eax*4+4]
fadd [ecx+eax*4+4]
fstp [ecx+eax*4+4]
fld [esp+8]
fmul [ebx+eax*4+8]
fadd [ecx+eax*4+8]
fstp [ecx+eax*4+8]
add eax,3
cmp eax,ebp
jle loop

which increases the number of operations (and the bytes occupied) to 300 % of the original.

As there are more operations now, the operations in the branch may be reordered and the

numeric coprocessor may be stuffed with some of the simple instructions; this increases

70

pipeline utilization.

10.4.4. Force-directed scheduling

Force-directed scheduling is a modular scheduling algorithm, based on probabilistic

approximations of utilisation. It is based on the idea of balancing operation load in such a way

that the difference of minimum and maximum of concurrently used processors is a small value.
In this case the number of processors required is greater than or equal to the maximum value,

which in turn results in a high average utilisation.

The deviation from the average utilisation is weighted with the concurrent load in a way similar

to Hooke's law (F=-W*deltaW). Scheduling seeks the minimum value of a force-like quantity.

Additional components may be also introduced to the algorithm, usually as an additional

component of the force. This flexibility, in addition to the good results achieved with force-

directed scheduling make this algorithm one of the feasible, useful methods. Sometimes the
algorithm serves as an example or as a special form of a benchmark.

Force-directed scheduling is capable of dealing with optimisation of both elementary

operations and delays (i.e. buffers). Introducing buffers to the scheduling stage requires

changes in the data models, so it is not usually used. This modification also increases the

r number of elementary operations in the graph, which increases scheduling time.

The load of an elementary operation is equal to the number of processors used during the

execution of the operation, thus it is 1 for every time cycle in which the operation is active, for
every fixed operation. The load of moving operations is calculated in a different way:

As the starting cycle of a moving operation is unknown, it may be approximated only. A

suitable approximation is to use a uniform probability function for every cycle of the time

frame. The start probability function is defined so that

V(i,t) is equal to the probability of starting elementary operation e(i) in time cycle t.

V(i,t)= 1/(l(i)-s(i)+l) for every t such that s(i)__t___l(i); otherwise V(i,t)=O.

The V(i,t) function is trivial for fixed operations, as it is equal to 1 for the starting cycle
t=s(i)=l(i).

As multicycle operations are using a processor for every cycle in which they are working, a
function must be used to describe the actual load of elementary operation e(i):

G(i,tlk) is equal to the load of elementary operation e(i) in time cycle t, with the assumption
that e(i) is started in time cycle k.

71

G(i,tlk)= 1 for every t such that k_<t___k+t(i)-1; otherwise G(i,tlk)=O.

The total load of e(i) is a function based on V(i,t) and G(itlk):

U(i,t)=sum(G(i,tlk)*V(i,k):s(i)___k_<l(i)) for 0___t<_L- 1.

After finding the total load for all of the operations, the load of operations using the same type

of operations must be totalled to find the utilisation of processors as a function of time:

W(j,t) is equal to the number of processors of type j used in time cycle t; the load

function for operations of type j.

W(j,t)=sum(U(i,t):j(i)=j) for O0t_<L-1.

During pipelined execution time cycles which are congruent modulo R are happening

simultaneously, so the load functions must be folded to reflect this. The folding process

transforms the load in cycle t to cycle (t mod R):

Cj,t) is equal to the number of processors of type j used in time cycle t during
pipelined execution, the overlapped load function of operations of type j.

Cj,t)=sum(W(j,t):n mod R=t for (O0<n_<L-1)) for 0<tR-1.

(For non-pipelined graphs C(j,t)=W(j,t))

The number of processors to be built to the hardware unit must be found as

max(whole(C(j,t)):0__tL-1),

where the whole(x) function returns the smallest integer value greater than or equal to x. A
uniform load is desirable as it results in an overall high utilisation and low idle percentage.

The force function describes the relative quantity of two scheduling plans. It is defined as sum

in the form

F(A)=sum(sum(wj)*COj,t)*ACQ,t):0_<t-<R-1): lhjJ),

where w(j) is the relative cost of type j processors.

Calculation of the F function requires the value of CO,t) in both of of the scheduling plans. A

negative value of F means a transition to a better scheduling plan. The optimal starting cycle

for an operation may be found by comparing the transition results from its initial, moving state

to the states found after fixing the operation to every cycle in its time frame. The time cycle

resulting in the smallest F value is chosen as the optimal solution, after which the operations

loses its mobility and is fixed to the optimal t cycle.

72

Force-directed scheduling scans all of the moving elements, finding the minimum ofF for all of

their possible starting cycles. As the optimum is found, the element is fixed there, and the next

element becomes available for scheduling. "

10.4.4.2. Disadvantages

As force-directed scheduling scans the elementary operations sequentially, it is not immune to

the effects of ordering the operations (transitions to local optima does not always end in a

global optimum). A typical example of that is the so-called bottleneck, an operation with

multiple inputs and outputs separating the graph (Fig. 43.). Premature scheduling of a

bottleneck operation may result in a disaster for other operations as it reduces the time frames

for a lot of operations.

Bottleneck

Figure 43.

Section of a graph containing a bottleneck

As force-directed scheduling has an execution time of order 3 as a function of system

complexity, it executes much slower than list scheduling.

Due to the floating-point operations in a force-directed algorithm, hardware implementations

are much more difficult to design than list-scheduling or ILP-based scheduling.

10.5. Conditional execution

Elementary operation graphs may contain branches that are executed if and only if an

expression is valid. Presence of such a branch is a serious problem during scheduling as

conditional execution may be treated as a static (worst-case) problem or using a heuristic

model (which requires previous information on the composition of the data processed by the

73

hardware). Choosing the model of the conditional execution is not easy as both methods are

useful only under conditions.

10.5.1. Worst-case model

Worst-case models of conditional execution prescribe the system to be able to handle any

combination of inputs without decreasing performance. This condition during scheduling

requires the scheduler to find the worst-case input and find a hardware plan that is capable of

dealing with the problem. Worst-case design is usually an overestimation of system load and
increases realisation costs due to the additional resources that must be available (but not used

in a system that never approaches the worst-case load).

The worst-case model of the conditional branches treats the branches as if they were executing

always fully parallel (requiring the maximum of resources the branches need in a given time
cycle). A system designed to deal with such a load would not be ran over during regular usage
as the actual usage of processors may not exceed the worst-case value. This property,
however, means that some of the built-in processors would not be used most of the time.

10.5.2. Probability-based model

The opposite of worst-case design is the probability-based method of conditional execution.

This approximation presents a model of conditional execution that needs the distribution of
input values. The conditional branches are given weight values depending on the probability of

execution in the mutually exclusive branches. The condition at the beginning of the branches is
said to take the branches with a similar distribution. After this step, data propagation depends

on the, inputs following this distribution; data that deviates may slow down the system.

A typical usage of probability-based conditional execution is the internal structure of RISC
processors. Such a processor features different types of execution units, each capable of

dealing with a given set of instructions. Instructions executed inside the processor are entering

one of the units depending on the type of operation they perform. In the case of a PowerPC
604, for example (which CPU contains two multi-cycle integer, one multi-cycle integer, a

floating-point and a load-store unit), conditional execution is present as the processor activates

one of its execution units depending on the type of the next instruction. As the PowerPC 604
may fetch 4 instructions in a single clock cycle, worst-case design would suggest a minimum of

4 pieces of all execution units (more for multi-cycle types). The designers of the PowerPC
chose to reduce the number of units to one in all types save single-cycle integer operations

(which are built twice). This realisation means that the PowerPC 604 keeps on running at

74

maximum speed (starting the execution of four instructions every clock cycle) if the

instructions may be dispatched without stalls. As the number of units is lower than the worst-

case value, the processor may encounter instructions that may not be dispatched to the

respective units as they are still processing the previous instruction. This situation (a data

overrun or stall) prevents execution of instructions and results in idle clock cycles for the

processor. From the outside the processor may be modelled as an execution unit that executes

instructions with a speed that is not independent of the input sequence. This property is a

disadvantage if the method is compared to worst-case design (as it changes the characteristics

of the elementary operations).

RISC (and internal pipeline) processors designed like the PowerPC 604 are to be programmed

in such a way that program instruction sequences are designed using knowledge of the internal

structure. For general-purpose hardware, such an assumption may not be made, so worst-case

design may be more useful for systems that are latency-bound.

10.5.3. Realisation

Force-directed scheduling is an algorithm that may be easily extended to process graphs

containing conditional execution. This modification does not modify the cost function, rather

the generation of the load functions (W, C and U). The modified functions are used to find the

force values and the algorithm proceeds normally after this step.

Scheduling a conditional execution block is done in two steps: the inside and the outside of the

block are to be treated in a different way; the order is not presrcibed. A conditional execution

block (or conditional block) is the set of branches between the 'fork' operation (the one with

the distributor property) and the 'join' operation (the receptor).

From the outside, the worst-case processor load in a given time cycle is equal to the maximum

that is possible inside the block (i.e. the maximum of processor reqirements for all branches).

This may be expressed as the

U'(i,t)=max (U(i,t,k): 1<=k<=b)

worst-case load function of the conditional block, where b is the number of conditional

branches inside the block and U(i,t,k) is the U(i,t) load function for branch k; this function is

the sum of load functions for the elementary operations in a given branch. The worst-case load

function means the extreme value of the load of operations inside the block. Scheduling

operations outside the block may use the U'(i,t) function as a load model of the block.

Scheduling the operations inside the block may be done using the load function(s) of the

operations outside that block. Multiple conditional blocks use the worst-case load functions as

75

they are independent (a block is independent of the other).

76

10.6. Examples

For comparison of different scheduling algorithms, we use the same problem graph. During

scheduling the pipelined execution mode is also used, with a restart time of 5 cycles.

System inputs

6 & Single-cycle

2 5 operation (#7)

S7Two-cycle

k operation (#6)

System output

Our system is operating in an environment such that latency must be equal to or less than 7.

This is equivalent to ALAP(4)•6. (This constraint prescribes L to be less than 8, and is set by

the external units connected to our device. Any solution resulting in L greater than 7 must be

discarded as it ruins the timing for the environment. A latency value below 8 is suitable,

probably extended to 7 using inserted delay elements.)

We distinguish between two different processors, one used for execution single-cycle

operations, the other one for multiple-cycle execution. Single-cycle (type 1) processors' cost

is one-half of the cost of multi-cycle (type 2) processors. (w(1)=l, w(2)=2)

77

10.6.1. ILP-based scheduling

The respective cost for processors is proportional to the execution time, i.e. w(1)=l, w(2)=2.

Total system cost must be kept under D=12. Number of processors is M(1) and M(2), total

implementation cost is C=w(1)*M(1)+w(2)*M(2)=M(1)+2*M(2).

Operation ASAP cycle ALAP cycle Unit type Execution
number time

i s(i) i(i) ji) t(i)
1 0 2 1 1
2 1 3 2 2
3 3 5 1 1
4 4 6 1 1
5 0 4 1 1
6 0 3 2 2
7 2 5 1 1

The non-trivial starting time variables (x(i,t)) are found based on the ASAP and ALAP

values:

t x(1,t) x(2,t) -x(3,t) x(4,t) x(5,t) x(6,t) x(7,t)
0 x(1,0) 0 0 0 x(5,0) x(6,0) 0
1 x(1,1) x(2,1) 0 0 x(5,1) x(6,1) 0
2 x(1,2) x(2,2) 0 0 x(5,2) x(6,2) x(7,2)
3 0 x(2,3) x(3,3) 0 x(5,3) x(6,3) x(7,3)
4 0 0 x(3,4) x(4,4) x(5,4) 0 x(7,4)

" -5 0 0 x(3,5) x(4,5) .0 0 x(7,5)
S6 0 0 0 x(4,6) 0 0 0

As there are multiple-cycle operations present, they use their processors both during their

first and second cycle. For this reason, the number of processors used in the implementation

of such an operation is expressed by x'(i,t):

tx'(i,t) x'(2,t) x'(6,t)
for every single-cycle

operation
O x(i,O) 0 x(6,0)
1 x(i, 1) x(2,1) x(6,1)+x(6,0)
2 x(i,2) x(2,2)+x(2,i) x(6,2)+x(6,1)
3 x(i,3) x(2,3)+x(2,2) x(6,3)+x(6,2)
4 x(i,4) x(2,3) x(6,3)
5 x(i,5) 0 0
6 x(i,6) 0 0

For a pipelined execution mode with R=5, the sixth cycle is executing simultaneously with

cycle 0 of the next data packet. This is also true for the 7th and 1st cycles, so this pipelined

utilisation is found by folding the table:

tx"(i,t) x"l(2,t) x"(6,t)
for every single-cycle

operation
0 x(i,0)+x(i,5) 0 x(6,0)
1 x(i, 1)+x(i,6) x(2,1) x(6,1)+x(6,0)
2 x(i,2) x(2,2)+x(2,1) x(6,2)+x(6,1)

78

x(6,0)-M(2)<O

x(2, 1)+x(6, 1)+x(6,0)-M(2)<O

(as x'(2, 1)-x(2, 1) and x'(6, 1)=x(6,0)+x(6, 1))

x(2,2)+x(2, 1)+x(6,2)+x(6, 1)-M(2)<O

x(2,3)+x(2,2)+x(6,3)+x(6,2)-M(2)<O

x(2,3)+x(6,3)-M(2)<O

The trivial lines (i.e. for t=5: O-M(2)___O) are omitted.

b.2) Pipelined execution, time domain is folded:

In addition to multicycle operations, system time must be folded to reflect the overlapping

execution, so we need the overlapping x"(i,t) values. The total of simultaneously utilised

processors must be found for every t such that 0<t<R-1:

x(1,0)+x(5,0)+x(3,5)+x(4,5)+x(7,5)-M(1)_<O

x(1, 1)+x(5, 1)+x(4,6)-M(1)<O

x(1,2)+x(5,2)+x(7,2)-M(1)0O

x(3,3)+x(5,3)+x(7,3)-M(1)<O

x(3,4)+x(5,4)+x(7,4)-M(1)<O

(as x"(4,0)=x(4,0)+x(4,5)=x(4,5),

x"(3,0)=x(3,0)+x(3,5)-x(3,5),

x"(7,0)-x(7,0)±x(7,5)=x(7,5),

:; .- x"(4, 1)=x(4, 1)+x(4,6)--x(4,6),

x"(3, 1)=x(3, 1)±x(3,6)-0 and

x"(7, 1)-x(7, 1)+x(7,6)=0.)

Other operations (e.g. e(1)) are unaffected because of their ALAP times: 1(1)<_R-1)

80

x(6,0)-M(2)0Ox(2, 1)+x(6, 1)+x(6,0)-M(2)0O

x(2,2)+x(2, 1)+x(6,2)+x(6, 1)-M(2)<O

x(2,3)+x(2,2)+x(6,3)+x(6,2)-M(2)0O

x(2,3)+x(6,3)-M(2)0O

(Note that because of the ASAP and ALAP times of operations #2 and #6, the folding of

inequalities did not affect the system for operations of type 2.)

c) Data dependencies must not violated. This prescribes the following relations:

e(1)--e(2),e(2)->e(3),e(3)-->e(4),e(5)-*e(3),e(6)->e(7),e(7)-->e(4).

Note that the following indirect dependencies are not used:

e(1)--e(3),e(1)->e(4),e(5)-*e(4),e(6)-*e(4).

(They result in a number of redundant inequalities.)

O*x(1,0)+ 1 *x(1, 1)+2*x(1,2)-1 *x(2,1)-2'*x(2,2)-3 *x(2,3)<-1

1 *x(2,1)+2*x(2,2)+3 *x(2,3)-3 *x(3,3)-4*x(3,4)-5 *x(3,5)_<- 1

3 *x(3 3)+4*x(3,4)+5 *x(3,5)-4*x(4,4)-.5 *x(4,5)-6*x(4,6)•)<- 1

0 *x(5,0)+l *x(5,1)+2*x(5,2)+4*x(5,4)-3 *x(3,3)-4*x(3,4)-5 *x(3,5)<-I

O*x(6,0)+1*x(6,1)+2*x(6,2)+3*x(6,3)-

-2*x(7,2)-3 *x(7,3)-4*x(7,4)-5 *x(7,5)<-• 1

2*x(7,2)+3*x(7,3)+4*x(7,4)+5*x(7,5)-4*x(4,4)-5*x(4,5)-6*x(4,6)< -I

The redundancy of the e(1)-+e(3) dependency is clear as it is equivalent to the sum of the

e(1)->e(2) and e(2)--*e(3) inequalities. (Trivial proof for the transitive property of'->'.)

d) Total implementation cost must be kept below cost limit:

C=M(1)+2*M(2)<__D,

D=12.

Solutions minimise C. A possible solution is the following:

a) Non-pipelined execution:

x(1,0)=x(2, 1)=x(3,3)-x(4,6)-x(5, 1)-x(6,3)=x(7,4)=1,

M(1)=M(2)=I,

81

C=3<__D.

b) Pipelined execution:

x(1,0)-=x(2,2)-x(3,4)=x(4,6)=x(5,3)=x(6,0)=x(7,3)= 1,

M(1)=M(2)=I,

C--3•<D.

10.6.2. List scheduling, no hardware constraint

Our system is operating in an environment such that latency must be equal to or less than 7.

This is equivalent to ALAP(4)___6. We distinguish between two different processors, one used

for execution single-cycle operations, the other one for multiple-cycle execution.

Number of processors (M(1) and M(2)) must be minimised. Priority (p(i)) is equal to 4-m(i),

operations with a lower priority value are at a disadvantage.

Operation SLT LLT Unit type Mobility Execution
number (I(i)-s(i)) time

i s(i) l1i) i (i) m(i) 0~)

1 0 2 1 2 1
2 1 3 2 2 2
3 3 5 1 2 1
4 4 6 1 2 1
5 0 4 1 4 1
6 0 3 2 3 2
7 2 5 1 3 1

Time domain is scanned in increasing order:

0) Competition between e(1) and e(5). As p(1)=2>p(5)=0, e(5) is delayed, this affects no other

operation as e(5) was not in its ALAP cycle. The winner, e(1) is fixed so s(1)=l(1)=0. e(6) is

fixed without competition as there is no other operation of type 2 that may be started in t=0.

• !i s(i) l(i) m(i)

1 0 0 0
2 1 3 2
3 3 5 2
4 4 6 2

5 1 4 3
6 0 0 0
7 2 5 3

Cycle 1) No competition, e(2) and e(5) are started.

82

i s(i) l(i) m(i)
1 0 0 0
2 1 1 0
3 3 -5 2
4 4 6 2
5 1 1 0
6 0 0 0
7 2 5 3

Cycles 2), 3) and 4): e(7), e(3) and e(4) are fixed without competition.

Cycles 5) and 6): no operations remain to be scheduled for these cycles.

Final result:

i s(i) l(i) m(i)
1 0 0 0
2 1 1 0
3 3 3 0
4 4 4 0
5 1 1 0
6 0 0 0
7 2 2 0

This scheduling plan requires one unit of type 1 and two units of type 2 as the second cycle of

e(6) is operating simultaneously with the first cycle of e(2), which requires more processors

than the optimal solution M(2)=l. Total latency is 5. (This may be extended to 7 by inserting a

delay of two cycles somewhere, if latency should be exactly 7. This is a decision that must be

made judging the properties of the environment.)

Should the system be operated with a restart time of 5, there would be no change in the

number of processors required as L=5 is equal to R=5.

83

10.6.3. List scheduling under hardware constraint

Our system is operating in an environment such that only one processor is available for type 1

and one for type 2 (M(1)=M(2)=I). System latency must be found.

Priority (p(i)) is equal to the total execution time for operations following e(i), Operations

with a lower priority value are at a disadvantage.

Operation Initial Unit type Priority Execution
number ASAP cycle time

i s(i) M~)r(i) t i)
1 0 1 4 1
2 1 2 2 2
3 3 1 1 1
4 4 1 0 1
5 0 1 2 1
6 0 2 2 2
7 2 1 1 1

Time domain is scanned in increasing order:

0) Competition between e(1) and e(5). As p(1)=4>p(5)=2, e(5) is delayed. The winner, e(1) is

fixed so s(1)=l(1)=0. e(6) is fixed without competition as there is no other operation of type 2

that may be started in t=0.

i s(i)
1 0
2 1
3 3
4 4
5 1
6 0
7 2

1) e(5) is started. e(2) may not be started as the only available type 2 processor is occupied; it

contains the data .of e(6) in its second cycle. Delaying e(2) increases s(3) and s(4) due to data

dependencies.

i s(i)
1 0
2 2
3 4
4 5
5 1
6 0
7 2

2) e(2) and e(7) are started. There is no competition.

3) No operation is started as there is no s(i)=3 value in the table.

4) and 5): e(3) and e(4) are started without competition.

84

Final result:

i s(i)
1 0
2 2
3 4
4 5
5 1
6. 0
7 2

This scheduling plan requires one processor of type 1 and one of type 2, as prescribed.

Latency, however, is increased to 6.

Pipelined execution with a restart time of 5 violates system constraints, as e(4) is started in

t=5, e(1) in t=0, which cycles are happening simultaneously. This results in a collision of data

if a single processor is used for e(1) and e(4). A pipeline-aware list scheduler would delay

e(4) so that it fits into a 'hole' in pipelined mode (Fig 42.).

The first unoccupied cycle would be t=8, so e(4) would be fixed to s(4)=8. This increases

latency to L=9.

10.6.4. Force-directed scheduling, non-pipelined execution

To calculate the functions of the force-directed scheduling, we use a common denominator of
60, so most of the calculations are transformed to integers.

i s(i) I(i) j(i) t(i) V(i,0) V(i,1) V(i,2) V(i,3) V(i,4) V(i,5) V(i,6)
1 0 2 1 1 20/60 20/60 20/60
2 1 3 2 2 20/60 20/60 20/60
3 3 5 1 1 20/60 20/60 20/60
S4 4 6 1 1 20/60 20/60 20/60
5 0 4 1 1 12/60 12/60 12/60 12/60 12/60
6 0 3 2 2 15/60 15/60 15/60 15/60
7 2 5 1 1 15/60 15/60 15/60 15/60

As there are multi-cycle operations in the graph, U(i,t) must be adjusted to reflect this. For

other operations, U(i,t)=V(i,t). C(j,t)=W(j,t) as there is no overlapping in time domain.

(Type 2 operations are in bold, changes are highlighted with italic.)

85

i s(i) l(i) j(i) t(i) U(i,0) U(i, 1) U(i,2) U(i,3) U(i,4) U(i,5) U(i,6)

1 0 2 1 1 20/60 20/60 20/60
2 1 3 2 2 20/60 40/60 40/60 20/60
3 3 5 1 1 - 20/60 20/60 20/60
4 4 6 1 1 20/60 20/60 20/60
5 0 4 1 1 12/60 12/60 12/60 12/60 12/60
6 0 3 2 2 15/60 30/60 30/60 30/60 15/60
7 2 5 1 1 15/60 15/60 15/60 15/60

C(1,t) 32/60 32/60 47/60 47/60 67/60 55/60 20/60

C(2,t) 15/60 50/60 70/60 70/60 35/60 0/60 0/60

We find the optimal starting cycle for e(1) first. Time cycles are scanned in increasing

direction, from s(1)=O to 1(1)=2.

Fixing e(1) to cycle 0 yields

i s(i) 1(i) j(i) t(i) U(i,O) U(i,1) U(i,2) U(i,3) U(i,4) U(i,5) U(i,6)
1 0 0 1 1 60/60
"2 1 3 2 2 20/60 40/60 40/60 20/60
3 3 5 1 1 20/60 20/60 20/60
4 4 6 1 1 20/60 20/60 20/60
5 0 4 1 1 12/60 12/60 12/60 12/60 12/60
6 0 3 2 2 15/60 30/60 30/60 30/60 15/60
7 2 5 1 1 15/60 15/60 15/60 15/60

CO(1,t) 32/60 32/60 47/60 47/60 67/60 55/60 20/60
CO(2,t) 15/60 50/60 70/60 70/60 35/60 0/60 0/60
C(1,t) 72/60 12/60 27/60 47/60 67/60 55/60 20/60
C(2,t) 15/60 50/60 70/60 70/60 35/60 0/60 0/60

AC(1,t) 40/60 -20/60 -20/60 0 0 0 0
L AC(2,t) 0 0 0 0 0 0 0

(CO(i,t) denotes the initial, C(i,t) the adjusted CO values. AC(i,t)=C(i,t)-CO(i,t))

F(A)=(32*40-32*20-47*20)/3600=-300/3600, the negative sign means an improvement of the

initial schedule.

Fixing e(1) to cycle 1 results in

i .s(i) l(i) j(i) t(i) U(i,0) U(i,1) U(i,2) U(i,3) U(i,4) U(i,5) U(i,6)
1 1 1 1 1 60/60
2 2 3 2 2 30/60 60/60 30/60
3 4 5 1 1 30/60 30/60
4 5 6 1 1 30/60 30/60
5 0 4 1 1 12/60 12/60 12/60 12/60 12/60
6 0 3 2 2 15/60 30/60 30/60 30/60 15/60
7 2 5 1 1 15/60 15/60 15/60 15/60

CO(1,t) 32/60 32/60 47/60 47/60 67/60 55/60 20/60
CO(2,t) 15/60 50/60 70/60 70/60 35/60 0/60 0/60
C(1,t) 12/60 72/60 27/60 47/60 67/60 75/60 30/60
C(2,t) 15/60 30/60 60/60 90/60 45/60 0 0

AC(1,t) -20/60 40/60 -20/60 -20/60 -10/60 20/60 10/60
AC(2,t) 0 -20/60 -10/60 20/60 10/60 0 0

F(A)=2*(-50*20-70* 10+70*20+35*10)/3600+

+(-32*20+32*40-47*20-47*20-67 10+55*20+20* 10)/3600

86

F(A)=-410/3600

Fixing e(1) to cycle 2 causes

i s Ci) l(i) _j(i) t(i) U(i,0) U(i,l1) U(i,2) U(i,3) U(i,4) U(i,5) U(i,6)

1 2 2 1 1 60/60

2 3 3 2 2 60/60 60/60
3 5 5 1 1 60/60
"4 6 6 1 1 60/60
5 0 4 1 1 12/60 12/60 12/60 12/60 12/60
6 0 3 2 2 15/60 ..30/60 30/60 30/60 15/60
7 2 5 1 1 15/60 15/60 15/60 15/60

CO(1,t) 32/60 32/60 47/60 47/60 67/60 55/60 20/60
CO(2,t) 15/60 50/60 70/60 70/60 35/60 0/60 0/60

C(1,t) 12/60 12/60 87/60 27/60 27/60 75/60 60/60
C(2,t) 15/60 30/60 30/60 90/60 75/60 0 0

AC(1,t) -20/60 -20/60 40/60 -20/60 -40/60 20/60 40/60
L AC(2,t) 0 -20/60 -40/60 20/60 40/60 0 0

F(A)=2*(_50*20.40*70+20*70+40*35)/3600+

+(-20*32-20*32+40*47-20*47-40*67+20*55+40*20)/3600

F(A)=-5120/3600

87

As F(A) had its minimum when e(1) was fixed to cycle 2, this position is the initial scheduling

plan for the next operation. Note that the suceessors of e(1) are also fixed as e(1) is started in

its ALAP cycle:
Si s(i) I(i) j(i) t(i) U(i,0) U(i,l1) U(i,2) U(i,3) U(i,4) U(i,5) U(i,6)

1 2 2 1 1 60/60

2 3 3 2 2 60/60 60/60
3 5 5 1 1 60/60
4 6 6 1 1 60/60
5 0 4 1 1 12/60 12/60 12/60 12/60 12/60
6 0 3 2 2 15/60 30/60 30/60 30/60 15/60
7 2 5 1 1 15/60 15/60 15/60 15/60

C(1,t) 12/60 12/60 87/60 27/60 27/60 75/60 60/60
15/60 30/60 30/60 90/60 75/60 0 0

The next operation to schedule is e(6). Time domain is scanned in increasing order, from

cycle 0 to cycle 3. As we fix e(6) to cycle 0:
i s(i) i(i) j(i) t(i) U(i,0) U(i,1) U(i,2) U(i,3) U(i,4) U(i,5) U(i,6)
1 2 2 1 1 60/60
2 3 3 2 2 60/60 60/60
3 5 5 1 1 60/60
4 6 6 1 1 60/60
5 0 4 1 1 12/60 12/60 12/60 12/60 12/60
6 0 0 2 2 60/60 60/60
7 2 5 1 1 15/60 15/60 15/60 15/60

CO(1,t) 12/60 12/60 87/60 27/60 27/60 75/60 60/60
CO(2,t) 15/60 30/60 30/60 90/60 75/60 0 0
C(1,t) 12/60 12/60 87/60 27/60 27/60 75/60 60/60
C(2,t) 60/60 60/60 0 60/60 60/60 0 0

AC(It) 0 0 0 0 0 0 0
AC(2,t) 45/60 30/60 -30/60 -30/60 -15/60 0 0

F(A)=2*(45*15+30*30-30*30-30*90-15*75)/3600+(0)/3600--6300/3600.

Setting cycle 1 as starting time for e(6) yields

i SOi) -l(i) -!ýi) t(i) U(i,0) U(i, 1) U(i,2) U(i,3) U(i,4) U(i,5) U(i,6)

1 2 2 1 1 60/60
2 3 3 2 2 60/60 60/60
3 5 5 1 1 60/60
4 6 6 1 1 60/60
5 0 4 1 1 12/60 12/60 12/60 12/60 12/60
6 1 1 2 2 60/60 60/60
7 3 5 1 1 20/60 20/60 20/60

CO(1,t) 12/60 12/60 87/60 27/60 27/60 75/60 60/60
CO(2,t) 15/60 30/60 30/60 90/60 75/60 0 0
C(1,t) 12/60 12/60 72/60 32/60 32/60 85/60 60/60
C(2,t) 0 60/60 60/60 60/60 60/60 0 0

AC(1,t) 0 0 -15/60 5/60 5/60 5/60 0
AC(2,t) -15/60 30/60 30/60 -30/60 -15/60 0 0

F(A)=2*(-15* 15+30*30+30*30-30*90-15*75)/3600+

88

+(-15 *87+5 *27+5 *27+5 *75)/3600=-5160/3600.

Settin (6)=6)=1 results in
i s(i) I(i) j(i) t(i) U(i,0) U(i,1) U(i,2) U(i,3) U(i,4) U(i,5) U(i,6)
1 2 2 1 1 60/60
2 3 3 2 2 60/60 60/60
3 5 5 1 1 60/60
4 6 6 1 1 60/60
5 0 4 1 1 12/60 12/60 12/60 12/60 12/60
6 2 2 2 2 60/60 60/60
7 4 5 1 1 30/60 30/60

CO(1,t) 12/60 12/60 87/60 27/60 27/60 75/60 60/60
CO(2,t) 15/60 30/60 30/60 90/60 75/60 0 0
C(1,t) 12/60 12/60 72/60 12/60 42/60 95/60 60/60
C(2,t) 0 0 60/60 120/60 60/60 0 0

AC(1,t) 0 0 -15/60 -15/60 15/60 15/60 0
AC(2,t) -15/60 -30/60 30/60 30/60 -15/60 0 0

F(A)=2*(15' 15-30*30+30*30+30*90-15*75)/3600+

+(-15 87-15*27+15*27+15 *75)/3 600=2520/3 600.

Note that this large positive value means a definite change in quality, as the new schedule

requires two type 2 processors due to C(2,3)=2.

89

Starting 6) in cycle 3 produces a similar collision in cycles 3 and 4:
i sii) I(i) _j(i) t(i) U(i,0) U(i,1) U(i,2) U(i,3) U(i,4) U(i,5) U(i,6)_

1 2 2 1 1 60/60
2 3 3 2 2 60/60 60/60
3 5 5 1 1 60/60
4 6 6 1 1 60/60
5 0 4 1 1 12/60 12/60 12/60 12/60 12/60
6 3 3 2 2 60/60 60/60
7 5 5 1 1 60/60

CO(1,t) 12/60 12/60 87/60 27/60 27/60 75/60 60/60
CO(2,t) 15/60 30/60 30/60 90/60 75/60 0 0
C(l,t) 12/60 12/60 72/60 12/60 12/60 120/60 60/60
C(2,t) 0 0 0 120/60 120/60 0 0

AC(1,t) 0 0 -15/60 -15/60 -15/60 45/60 0
AC(2,t) -15/60 -30/60 -30/60 30/60 45/60 0 0

F(A)=2*(-15*15-30*30-30*30+30*90+45*75)/3600+

.+(_15.87_15*27_15*27+45*75)/3600=9360/3600.

The optimum was found at cycle 0, so the scheduling of e(7) starts off from the following

initial scheduling plan:
i s(i) I(i) j(i) t(i) U(i,0) U(i, 1) W(i,2) U(i,3) U(i,4) U(i,5) U(i,6)

1 2 2 1 1 60/60
2 3 3 2 2 60/60 60/60
3 5 5 1 1 60/60
4 6 6 1 1 60/60
5 0 4 1 1 12/60 12/60 12/60 12/60 12/60
6 0 0 2 2 60/60 60/60
7 5 5 1 1 15/60 15/60 15/60 15/60

L C(1,t) 12/60 12/60 87/60 27/60 27/60 75/60 60/60
C(2,t) 60/60 60/60 0 60/60 60/60 0 0

90

As e(2) and e(6) are fixed by now, C(2,t) may not change any more. The steps for e(7) and

e(5) are the following:
CO(1,t) 1 12/60 112/60 87/60 27/60. 27/60 75/60 160/60

Fixing e(7) to cycle 2:
AC(I,t) 12/60 12/60 132/600 0 12/660 12/60 /660/60 60/60
AC(1,t) 0 0 45/60 -15/60 -15/60 -15/60 0

F(A)=(45*87-15*27-15*27-15*75)/3600=1980/3600.

Fixing e(7) to cycle 3:
I C(1,t) 12/60 12/60 72/60 72/60 12/60 160/60 60/601

AC(1,t) 0 0 -15/60 45/60 -15/60 -15/60 0

F(A)=(-15*87+45*27-15*27-15*75)/3600=-1620/3600.

Fixing e(7) to cycle 4:
I C(1,t) 12/60 12/60 72/60 12/60 72/60 60/60 60/60I

AC(1,t) 0 0 -15/60 -15/60 45/60 -15/60 0

F(A)=(-15*87-15*27+45*27-15*75)/3600=-1620/3600.

Note that this plan is equivalent to the previous one as e(7) competes only with e(5) without

data dependency, so e(5) introduces a uniform load on the processors in these cycles. In

other cycles e(7) increases the number of processors needed above 1, which is a waste of

hardware resources.

Fixing e(7) to cycle 5:
F C(l,t) 12/60 12/60 72/60 1 12/60 1 12/60 120/60 60/60I
1 AC(I,t) 0 0 -15/60 -15/60 1 -15/60 45/60 09

F(A)=(-15*87-15*27-15*27+45*75)/3600=1260/3600.

As a minimum was found for F in cycles 3 and 4, we are free to choose one of them. In this

case, due to lack of data dependencies, the choice is irrevelant, so 3 is chosen.

91

After fixing e7)tocyole 3, the initial conditions for e(5) are the following-
i s(i) l(i) j(i) t(i) U(i,0) U(il) U(i,2) U(i,3) U(i,4) U(i,5) U(i,6)
1 2 2 1 1 60/60
2 3 3 2 2 60/60 "60/60
3 5 5 1 1 60/60
4 6 6 1 1 60/60
5 0 4 1 1 12/60 12/60 12/60 12/60 12/60
6 0 0 2 2 60/60 60/60
7 5 5 1 1 60/60

SC(l,t) 12/60 12/60 72/60 72/60 12/60 60/60 60/60
(2,t) 60/60 60/60 0 60/60 60/60 0 0

As we scan time domain from cycle 0 to 4, e(5) is either increasing C(1,t) to 60/60 (in cycles

0, 1 and 4) or to 120/60 (in cycles 2 and 3). The F values are: 2160/3600 for an operation

collision (cycles 2 and 3), where the maximum of C(1,t) is increased to 120/60; -1440/3600

for any other cycle (which sets the maximum of C(1,t) to 60/60, resulting in a need of one

processor for type 1 elements.) Operation e(5) may be fixed to any of these cycles, so cycle 0

global ASAP cycle) is chosen:
i si(i) i) (i) t(i) U(i,0) U(i, 1) U(i,2) U(i,3) U(i,4) U(i,5) U(i,6)

1 2 2 1 1 60/60
2 3 3 2 2 60/60 60/60
3 5 5 1 1 60/60
4 6 6 1 1 60/60
5 0 4 1 1 60/60
6 0 0 2 2 60/60 60/60
7 5 5 1 1 60/60

(1,t) 60/60 0 60/60 60/60 0 60/60 60/60I(2,t_______640ý0
60/60 60/60 0 60/60 60/60

This scheduling plan requires one processors for both types, which is an optimal solution as

the system needs 4 units of type 2 processors (t(2)+t(6)=4) and 5 units of type 1 processors

(t(1)+t(3)+t(4)+t(5)+t(7)=5).

An implementation with one type 1 processor builds the system with 1'*L=7 units of type 1

processors, which means unused 2 units. As only 3 units of type 2 processors are idle, the

solution is optimal.

92

10.6.4.2, Force-directed scheduling, pipelined execution
Duringppeline(thR= COj)=WO, WO, 1) and CO,, 1)=Wo1)iff6).

i s(i) l(i) j(i) t(i) U(i,0) U(i,1) U(i,2) U(i,3) U(i,4) U(i,5) U(i,6)
1 0 2 1 1 20/60 20/60 20/60
2 1 3 2 2 20/60 40/60 40/60 20/60
3 3 5 1 1 20/60 20/60 20/60
4 4 6 1 1 20/60 20/60 20/60
5 0 4 1 1 12/60 12/60 12/60 12/60 12/60
6 0 3 2 2 15/60 30/60 30/60 30/60 15/60
7 2 5 1 1 15/60 15/60 15/60 15/60

W(1,t) 32/60 32/60 47/60 47/60 67/60 55/60 20/60
W(2,t) 15/60 50/60 70/60 70/60 35/60 0/60 0/60
C(1,t) 87/60 52/60 47/60 47/60 67/60
C(2,t) 15/60 50/60 70/60 70/60 35/60

irst oeration to be scheduled is el__
i s(i) l(i) j(i) t(i) U(i,0) U(i,1) U(i,2) U(i,3) U(i,4) U(i,5) U(i,6)
1 0 0 1 1 60/60
2 1 3 2 2 20/60 40/60 40/60 20/60
3 3 5 1 1 20/60 20/60 20/60
4 4 6 1 1 20/60 20/60 20/60
5 0 4 1 1 12/60 12/60 12/60 12/60 12/60
6 0 3 2 2 15/60 30/60 30/60 30/60 15/60
7 2 5 1 1 15/60 15/60 15/60 15/60

W(1,t) 72/60 12/60 27/60 47/60 67/60 55/60 20/60
•W(2,t) 15/60 50/60 70/60 70/60 35/60 0/60 0/60

CO(1,t) 87/60 52/60 47/60 47/60 67/60
CO(2,t) 15/60 50/60 70/60 70/60 35/60
C(1,t) 127/60 32/60 27/60 47/60 67/60
C(2,t) 15/60 50/60 70/60 70/60 35/60

AC(1,t) 40/60 -20/60 -20/60 0 0
AC(2,t) 0 0 0 0 0

F(A)=(40*87-20*52-20*47)/3600=1500/3600.
i s(i) l(i) j(i) t(i) U(i,o) U(i,1) U(i,2) U(i,3) U(i,4) U(i,5) U(i,6)
1 1 1 1 1 60/60
2 2 3 2 2 30/60 60/60 30/60
3 4 5 1 1 30/60 30/60
4 5 6 1 1 30/60 30/60
5 0 4 1 1 12/60 12/60 12/60 12/60 12/60
6 0 3 2 2 15/60 30/60 30/60 30/60 15/60
7 2 5 1 1 15/60 15/60 15/60 15/60

W(1,t) 12/60 72/60 27/60 27/60 57/60 75/60 30/60
W(2,t) 15/60 30/60 60/60 90/60 45/60 0/60 0/60
CO(1,t) 87/60 52/60 47/60 47/60 67/60
CO(2,t) 15/60 50/60 70/60 70/60 35/60
C(1,t) 87/60 102/60 27/60 27/60 57/60
C(2,t) 15/60 30/60 60/60 90/60 45/60
AC(1,t) 0 50/60 -20/60 -20/60 -10/67
AC(2,t) 0 -20/60 -10/60 20/60 10/60

F(A)=((50*52-20*47-20*47-10*67)+2*(-20*50- 10*70+20*70+10*3 5))/3600=
=150/3600.

93

i s(i) l(i) j(i) t(i) U(i,0) U(i,1) U(i,2) U(i,3) U(i,4) U(i,5) U(i,6)
1 2 2 1 1 60/60
2 3 3 2 2 60/60 .60/60
3 5 5 1 1 60/60
4 6 6 1 1 1 60/60
5 0 4 1 1 12/60 12/60 12/60 12/60 12/60
6 0 3 2 2 15/60 30/60 30/60 30/60 15/60
7 2 5 1 1 15/60 15/60 15/60 15/60

W(1,t) 12/60 12/60 87/60 27/60 27/60 75/60 60/60
W(2,t) 15/60 30/60 30/60 90/60 75/60 0/60 0/60
CO(1,t) 87/60 52/60 47/60 47/60 67/60
CO(2,t) 15/60 50/60 70/60 70/60 35/60
C(1,t) 87/60 72/60 87/60 27/60 27/60
C(2,t) 15/60 30/60 30/60 90/60 75/60

AC(1,t) 0 20/60 40/60 -20/60 -40/60
AC(2,t) 0 -20/60 -40/60 20/60 40/60

F(A)=((20,52+40*47_20*47.40,67)+2*(_20*50_40*70+20*70+40*3 5))/3600=
=-2700/3600.

The best result is to fix e(1) to cycle 2. This results in the following initialplan:
i s(i) 1(i) j(i) t(i) U(i,0) U(i,1) U(i,2) U(i,3) U(i,4) U(i,5) U(i,6)
1 1 1 1 1 60/60
2 2 3 2 2 60/60 60/60
3 4 5 1 1 60/60
4 5 6 1 1 60/60
5 0 4 1 1 12/60 12/60 12/60 12/60 12/60
6 0 3 2 2 15/60 30/60 30/60 30/60 15/60
7 2 5 1 1 15/60 15/60 15/60 15/60

W(1,t) 12/60 12/60 87/60 27/60 27/60 75/60 60/60
W(2,t) 15/60 30/60 30/60 90/60 75/60 0/60 0/60
C(1,t) 87/60 72/60 87/60 27/60 27/60
C(2,t) 15/60 30/60 30/60 90/60 75/60

This plan fixes e(2), e(3) and e(4) to their ALAP positions,so the next operation to schedule

is e(6). Time are scanned from 0 to 3:
i s(i) l(i) j(i) t(i) U(i,0) U(i,1) U(i,2) U(i,3) U(i,4) U(i,5) U(i,6)
1 1 1 1 1 60/60
2 3 3 2 2 60/60 60/60
3 5 5 1 1 60/60
4 '6 6 1 1 60/60
5 0 4 1 1 12/60 12/60 12/60 12/60 12/60
6 0 0 2 2 60/60 60/60
7 2 5 1 1 15/60 15/60 15/60 15/60

W(1,t) 12/60 12/60 87/60 27/60 27/60 75/60 60/60
W(2,t) 60/60 60/60 0 60/60 60/60 0 0
CO(1,t) 87/60 72/60 87/60 27/60 27/60
CO(2,t) 15/60 30/60 30/60 90/60 75/60
C(1,t) 87/60 72/60 87/60 27/60 27/60
C(2,t) 60/60 60/60 0 60/60 60/60

AC(1,t) 0 0 0 0 0
AC(2,t) 45/60 30/60 -30/60 -30/60 -15/60

F(A)=2*(45*15+30*30-30*30-30*90-15*75)/3600=-6300/3600

94

i s(i) l(i) j(i) t(i) U(i,O) U(i,1) U(i,2) U(i,3) U(i,4) U(i,5) U(i,6)
1 1 1 1 1 60/60
2 3 3 2 2 60/60 60/60
3 5 5 1 1 60/60
4 6 6 1 1 60/60
5 0 4 1 1 12/60 12/60 12/60 12/60 12/60
6 1 1 2 2 60/60 60/60
7 3 5 1 1 20/60 20/60 20/60

W(1,t) 12/60 12/60 72/60 32/60 32/60 80/60 60/60
W(2,t) 0 60/60 60/60 60/60 60/60 0 0
CO(1,t) 87/60 72/60 87/60 27/60 27/60
C0(2,t) 15/60 30/60 30/60 90/60 75/60
C(1,t) 92/60 72/60 72/60 32/60 32/60
C(2,t) 0 60/60 60/60 60/60 60/60

AC(1,t) 5/60 0 -15/60 5/60 5/60
AC(2,t) -15/60 30/60 30/60 -30/60 -15/60

(A4)=-5 100/3 600___ ___ _________

i s(i) l(i) j(i) t(i) U(i,0) U(i,1) U(i,2) U(i,3) U(i,4) U(i,5) U(i,6)
1 1 1 1 1 60/60
2 3 3 2 2 60/60 60/60
3 5 5 1 1 60/60
4 6 6 1 1 60/60
5 0 4 1 1 12/60 12/60 12/60 12/60 12/60
6 2 2 2 2 60/60 60/60
7 4 5 1 1 30/60 30/60

W(1,t) 12/60 12/60 72/60 12/60 42/60 90/60 60/60
W(2,t) 0 0 60/60 120/60 60/60 0 0
CO(1,t) 87/60 72/60 87/60 27/60 27/60
"CO(2,t) 15/60 30/60 30/60 90/60 75/60
C(1,t) 102/60 72/60 72/60 12/60 42/60
C(2,t) 0 0 60/60 120/60 60/60

AC(1,t) 15/60 0 -15/60 -15/60 15/60
AC(2,t) -15/60 -30/60 30/60 30/60 -15/60

F()=2700/3600
i s(i) l(i) j(i) t(i) U(i,0) U(i,1) U(i,2) U(i,3) U(i,4) U(i,5) U(i,6)
1 1 1 1 1 60/60
2 3 3 2 2 60/60 60/60
3 ` 5 5 1 1 60/60
4 6 6 1 1 60/60
5 0 4 1 1 12/60 12/60 12/60 12/60 12/60
6 3 3 2 2 60/60 60/60
7 5 5 1 1 60/60

W(1,t) 12/60 72/60 72/60 12/60 12/60 120/60 60/60
W(2,t) 0 0 0 120/60 120/60 0 0
CO(1,t) 87/60 72/60 87/60 27/60 27/60
CO(2,t) 15/60 30/60 30/60 90/60 75/60
C(1,t) 132/60 72/60 .72/60 12/60 12/60
C(2,t) 0 0 0 120/60 120/60

AC(I,t) 45/60 0 -15/60 -15/60 -15/60
AC(2,t) -15/60 -30/60 -30/60 30/60 45/60

F(A)=7290/3600

95

As e(6 is fixed to c ole 0, the initial plan for the schedulino is e(
i s(i) 1(i) j(i) t(i) U(i,0) U(il) U(i,2) U(i,3) U(i,4) U(i,5) U(i,6)
1 1 1 1 1 60/60
2 3 3 2 2 60/60 60/60
3 5 5 1 1 60/60
4 6 6 1 1 60/60
5 0 4 1 1 12/60 12/60 12/60 12/60 12/60
6 0 0 2 2 60/60 60/60
7 2 5 1 1 15/60 15/60 15/60 15/60

W(1,t) 12/60 12/60 87/60 27/60 27/60 75/60 60/60
W(2,t) 60/60 60/60 0 60/60 60/60 0 0
C(1,t) 87/60 72/60 87/60 27/60 27/60
C(2,t) 60/60 60/60 0 60/60 60/60

As we are after the scheduling of both type 2 operations, the F(A) values are depending only

on the C(1,t) function. The steps for e(7) are:

CO(,t) 87/60 72/60 87/60 27/60 27/60

Fixing e(7) to cycle 2:
SC(1,t) I 72/60 72/60 132/60 12/60 E12/60 I

AC(1,t) -15/60 0 45/60 -15/60 -15/60o

F(A)=(-15*87+45*87-15*27-15*27)/3600=1800/3600.

Fixing e(7) to cycle 3:
IC(,t) 1 72/60 72/60 7 160 72/60 1260I

AC(1,t) -15/60 0 -15/60 45/60 1-15/60

F(A)=(-15*87-15*87+45*27-15*27)/3600=-1800/3600.

Fixing e(7) to cycle 4:
I C(1,t) 172/60 1 72/60 1 75/60 1 12/60 172/60 I

AC(1,t) -15/60 0 -15/60 1-15/60 45/60

F(A)=(-15*87-15*87-15*27+45*27)/3600=-1800/3600

Note that this plan is equivalent to the previous one as e(7) competes only with e(5) without
data dependency, so e(5) introduces a uniform load on the processors in these cycles. In

other cycles e(7) increases the number of processors needed above 1, which is a waste of
hardware resources.

Fixing e(7) to cycle 5:
I C(1,t) 1132/60 72/60 75/60 12/60 112/60 I

AC(1,t) 45/60 0 -15/60 -15/60 -15/60I

F(A)=(45*87-15*87-15*27-15*27)/3600=1800/3600

As a minimum was found for F in cycles 3 and 4, we are free to choose one of them. In this

case, due to lack of data dependencies, the choice is irrevelant, so 3 is chosen.

96

After fixing e7) to cycle 3, the initial conditions for e(5) are the following:
i s(i) "l(i) JjLi t(i) U(i,0) U(i,l1) U(i,2) U(i,3) U(i,4) U,5) U(i,6)

1 1 1 1 1 60/60
2 3 3 2 2 60/60 60/60
3 5 5 1 1 60/60
4 6 6 1 1 60/60
5 0 4 1 1 12/60 12/60 12/60 12/60 12/60

6 0 0 2 2 60/60 60/60
7 3 3 1 1 60/60

W(1,t) 12/60 12/60 72/60 72/60 12/60 60/60 60/60
W(2,t) 60/60 60/60 0 60/60 60/60 0 0
C(1,t) 72/60 72/60 72/60 72/60 12/60
C(2,t) 60/60 60/60 0 60/60 60/60

As e(5) is the last of the operations, it does not cause a problem with data dependencies. As

we scan time domain in increasing order from 0 to 4, all cycles between 0 and R-1 are

scanned. The scheduling results:

For cycles 0, 1, 2 and 3: F(A)=(2*(-12*72)+48*72-12*12)/3600=1584/3600

For cycle 4: F(A)=(3 *(- 1 2*72)+48 *12)/3 600=-2016/3600

Fixinge() to cycle 4 sets the final scheduling plan:
i s(i) lI) (i) t(i) U(i,0) U(i,1) UJ(i,2) U(i,3) U(i,4) U(i,5) U(i,6)

1 1 1 1 1 60/60
2 3 3 2 2 60/60 60/60
3 5 5 1 1 60/60
4 6 6 1 1 60/60
5 4 4 1 1 60/60
6 0 0 2 2 60/60 60/60
7 3 3 1 1 60/60

W(1,t) 0 0 60/60 60/60 60/60 60/60 60/60
W(2,t) 60/60 60/60 0 60/60 60/60 0 0
C(1,t) 60/60 60/60 60/60 60/60 60/60

C2,t) 1 60/60 60/60 0 60/60 60/60

Which, with a latency of 7 and restart time of 5 requires one processor of both types (for

comparison: pipeline-aware hardware-bound list scheduling produced L=9).

97

References
[1] R. Camposano

From behaviour to structure: High-level synthesis, IEEE Design & Test of Comput.,
10 (1990) 8-19.

[2] R. Camposano and W. Rosenstiel
Synthesizing circuits from behavioural descriptions, IEEE Trans. Comput. Aided

Des.,
2 (1989) 171-180.

[3] C.-T. Hwang, J.-H. Lee and Y.-C. Hsu
A formal approach to the scheduling problem in high-level synthesis, IEEE Trans.
Comput. Aided Des., 10(4), (April 1991) 464-475.

[4] P.G. Paulin and J.P Knight
Force-directed scheduling for the behavioural synthesis of ASICs, IEEE Trans.
Comput. Aided Des., 6 (1989) 661-679.

[5] N. Park and A. Parker
SHEWA: A program for synthesis of pipelines, Proceedings of the 23rd Des.
Automation Conference, (1986) 454-460

[6] P. Marwedel and W. Rosenstiel
Synthese von RT-Strukturen aus Verhaltensbeschreibungen, Informatik Spektrum,
15 (1992) 454-460.

[7] P. Arat6
Logic synthesis of VLSI Structures based on a pipelined data flow model,
Department of Process Control, Technical University of Budapest, Report 1990.

[8] P. Arat6 and H. Fahner
A scheduling and allocation method for the high-level synthesis of pipelined data path,
Department of Process Control, Technical University of Budapest, Report, 1992.

[9] H. M. Lipp
Entwurf digitaler Schaltungen- Formale Hilfsmittel, Institut fir Technik der
Informationsverarbeitung, Technical University of Karlsruhe, Germany

[10] H. T. Kung
Why Systolic Architecture
COMPUTER vol. 15, no. 1. p.37-46, Jan. 1982.

98

For further reading

High-Level VLSI Synthesis R. Camposano, W. Wolf

Kluwer Academic Publisher, 1991.

High-level Synthesis D. Gajski

Kluwer Academic Publisher, 1992.

Software performance optimization

Programming RISC engines - Neal Margulis

- Doctor Dobb's Journal, February 1990

Programming the Pentium Processor - Ramesh Subramaniam, Kiran Kundargi

- Doctor Dobb's Journal, June 1993

Optimizing Pentium Code - Mike Schmit

- Doctor Dobb's Journal, January 1994

Pentium Optimizations and Num. Perf. - Stephen S. Fried.

- Doctor Dobb's Journal, January 1994

Processor realizations

PowerPC 604 RISC Microprocessor Technical Summary

- Order number MPC604/D

- Motorola Inc., 1994.

Scheduling methods

Force-directed scheduling for the behavioral synthesis of ASIC's

- Paulin P.G., Knight J.P.
- IEEE Trans. on CAD, 1989., p. 661.

A Formal Approach to the Scheduling Problem in BLS

- Hwag Ch-T., Lee J-H., Hsu Y-Ch.
- IEEE Trans. on CAD, 1991., p. 464.

99

PIPE Users Manual
version 1.0

Edited by Szabolcs Szigeti

1.995

Department of Process Control

Technical University of Budapest

krirtr users manuai

1. Introduction

Pipe was developed at the Department of Process Control, Technical University of Budapest,

as an educational software tool for designing pipeline data flow devices.

Pipe uses an elementary operations graph (EOG) where the nodes of the graph denote

elementary operations and the edges their data-interconnections.

Given a predefined restarting period pipe - if necessary - inserts buffers to meat this period.

Synchronisation buffers are also inserted.

Pipes generates different variations of the graph by moving the synchronisation buffers. For

every variation allocation is performed: every elementary operation, that are not working

concurrently may be combined into one unit. Pipe tries to find these units.

The software itself is written in C++ and runs under several variations of the UNIX multiuser

operating system.

2

riiiz users manual

2. Usage

The general format of the invocation of the pipe program is1 :

pipe [-s] [-v] [-bi [-Xd] [-p graph] restart [input: file]

The name of the program is pipe. This should be in a directory which is accessible by the

users (it is in their search path). Some run time parameters may be changed by optional

command line switches following the program name. Their order is not important. Table 1

summarises them.

Switch Explanation

-s The scheduling is not tight. Care should be taken when using
this switch as it may increase the number of variation by
several magnitudes.

-V Verbose mode. During the processing additional information
is displayed. This includes the number of variations, number,
place and types of buffers inserted and the current best graph.

-b Buffers are normally excluded from allocation. This switch
forces buffers to be allocated. This may lead to exponentially
increased processing times.

-Xd Activate d debug option. Only valid if pipe is compiled with
debugging enabled. More than one debug option may be
given, to list currently available options use -X-.

-p graph Dump the input graph to a file named graph after inserting
buffers. Useful for debugging.

Table 1.: Command line switches

The only mandatory command line parameter is the restart time which should follow the

switches if any. This should be given as an integer greater than 2.

The last parameter is the name of the input file. If non is given, pipe reads its standard input.

The format of the input is described in detail in section 3.

1 Text in bold should be typed exactly as shown, text in italics should be replaced by appropriate names and

anything between brackets is optional.

3

3. Input

Pipe uses as simple hardware description language as input, this declares functional elements

and gives the interconnection between them.

The following BNF (Backus-Naur Form) description illustrates pipe's input language:

graph graphid iodesc fedesc graphdesc outcn

graphid GRAPH name

iodesc ioitem I iodesc ioitem;

ioitem INPUT namelist OUTPUT namelist;

namelist NAME I namelist , name;

-fedesc := feitem I fedesc feitem;

feitem PROCESSOR NAME INPUT: NUMBER DELAY: NUMBER

PROCESSORANAME DELAY: NUMBER INPUT: NVMBERI

PROCESSOR NAME NUMBER NUMBER;

signal name FEname (signallist);

signallist siglistelem I siglist , sigelem;

siglelem INPUTname I SIGNALname;

outcn := OUTname SIGNALname;

3.1 Keywords and Identifiers

Inputs, outputs, processors (graph nodes) and interconnections (graph edges) are identified by

identifiers of the maximum length of 32 characters 2. They may contain alphanumerical (a-z,

0-9) characters and underscore. the first character can not be numeral. Case is insensitive3 .

Forward declarations are not allowed.

The following keywords are reserved, and may not be used as an identifier: graph, input,

output, processor, delay, out. Words are separated by blanks and/or tabs.

3.2 Graph declaration

The graph's name is declared by the graph keyword followed by a colon and the name of the

graph. The following line declares a graph named mygraph:

graph: mygraph

2 This is a compile time option, and may be changed.

3 Also a compile time option.

4

rFIFE users manual

3.3 I/0 declarations

Inputs are outputs are declared by the input- and output keywords, with the I/O identifiers

separated by commas. This example declares in-a, in b as an input and out x as an output:

input: in-a, in b

output: out x

3.4 Processor declarations

The processor keyword is used to declare processing elements. Two properties have to be

given here:- the number of inputs and the delay (time front valid input to valid output). The

following three lines are all valid declarations of a processor named sum with 4 inputs and a

delay of 10:

processor sum 10 4

processor sum delay: 10 input: 4

processor sum input: 4 delay: 10

3.5 Processor instantiations

Processors are instantiated in a form similar to a function call: the arguments are the inputs,

the value of the function is the output. Inputs may be named, i.e. using the output of a

previously instantiated processor, or unnamed, when the input is an other processor. In this

example a processor (divide) takes ml and m2 as an input and its output is named as result:

result divide (ml, m2)

Of course, the processor divide has to be defined in a processor statement, and must have

exactly two inputs.

In a similar fashion, divide takes ml as one input and the output of decrement as the other

input:

result divide(ml, decrement(m2))

3.6 Output connections

The outputs declared with the output keyword have to be connected to processor outputs. This

line connects result to out x:

out x result

5

rirr- users manuai

4. Output

Pipe's output contains the result of allocation: which functional elements are combined into

one.

The result is a table showing which elementary operations have been allocated into one

processor. The following listing is a sample output from the FIR example (section 3.).

Processor number 10 and 13 contain two operations (aa2, aa7 and aa5, aa6), all the other

processors contain only one. Note that allocation does not attempt to deal with operations that

will not fit into one processor: in this case multipliers are not allocated, because their delay is

more than half restart period. However their number is still given in the results listing.

------- ---- Results of the allocation----------
Proc 1 => (al,adder2)
Proc 2 => (a2,adder2)
Proc 3 => (a3,adder2)
Proc 4 => (a4,adder2)
Proc 5 => (a5,adder2)
Proc 6 => (a6,adder2)
Proc 7 => (a7,adder2)
Proc 8 => (a8,adder2)
Proc 9 => (aal,adder2)
Proc 10 => (aa2,adder2) (aa7,adder2)
Proc 11 => (aa3,adder2)
Proc 12 => (aa4,adder2)
Proc 13 => (aa5,aadder2) (aa6,adder2)
Proc 14 => (aa7,adder2)
Processor: adder2 -- 14
Processor: mult -- 8

Number of buffers: 56

6

5. Example

The FIR filter (see the graph below) is a simple device containing adders and multipliers.

inl in2 in3 in4 in5 Mn in7 Mn

........ o u t
aal a32 aa3 aa4 aa5 aa6 Wa

The following listing describes the FIR filter for pipe.

Graph: FIR-FILTER

Input: inl, in2, in3, in4, in5, in6, in7, in8

Output: out

Processor adderi delay: 2 input: I
Processor adder2 delay: 2 input: 2
Processor mult delay: 5 input: 1

Ml mult (adderi (nl).)
m2 mult (adderi (in2).)
m3 mult (adderi (in3))
m4 mult (adderi (in4))
m5 mult (adderi (inS))
m6 mult (adderi (inG))
m7 mult (adderi (in7))
m8 ~mult (adderi (inB))

aal adder2 (ml, m2)
aa2 adder2 (aal, m3)
aa3 adder2 (aa2, m4)
aa4 adder2 (aa3, m5)
aa5 adder2 (aa4, m6)
aa6 adder2 (aa5, m7)
aa7 adder2 (aa6, m8)

out aa7

7

6. Installing and porting

Pipe is distributed in C++ source. To compile, you will need the followings:

"* A UNIX or UNIX like operating system4 . Pipe is verified to work under SunOS 4.1, HP-

UX 8, HP-UX 9 and NetBSD-1.0.

"* A C++ compiler. During development the Free Software Foundation's G++ compiler 5

(versions 2.5.4 and 2.7.0) was used.

"* Yacc or equivalent compiler-compiler. The precompiled grammar is provided in the file

gram. cc. If you do not make changes in the grammar file, it is possible to install pipe

without yacc.

First unpack the compressed tar archive using the following command:

zcat pipe.tar.Z I tar xvf -

This should create a directory named pipe. Go to this directory. There is a configuration

script, run it:

./configure

If necessary, edit the file conf. h, it contains some values that you might width to change.

Start compilation:

make

After a while an executable named pipe should appear. Move this file where other users can

access it.

Pipe was written by having portability a goal. However due to some incompatibility between

the different UNIX systems, you may have to change the source. These changes should not

difficult.

4 Pipe was compiled under MS-DOS, but is not guaranteed to work because the awkward memory

management scheme of this system. It would probably mean little trouble to compile it under OS/2 or

Windows NT.

5 Available on the Internet from prep.ai.mit.edu via anonymous ftp.

8

Standard Benchmark Set Solved in the Frame of
the Curriculum

edited by

Istvin Jankovits

Technical University of Budapest

Faculty of Electrical Engineering and Informatics

Department of Process Control

Benchmarks

This report summarises the works has been done at the Technical

University of Budapest, Department of Process Control on the field of high-level

synthesis. The benchmarks that can be found on the next pages has been worked

out for the students of the course which name is High-Level Synthesis of digital

designs. The students had 1 month to solve the problems as it is defined on each

cover page. The students worked in pairs. Every group had to solve 8 problems:

1. The Data-Flow Graph

(Generating a DFG -or Elementary Operation Graphf EOG- from the textual
description of the task)

2. The VHDL Behavioral Description
3. The Input File of the WinSam

4. WinSam Results

(The WinSam is a test version of a force-directed based HLS tool has been

developed by a Ph.D. student in the Process Control Department)

5. The Input File of the PIPE

6. PIPE Results

(see Users Manual)

(One student has to solve points 3 and 4, while the other has to complete points 5

and 6.)
7. The Scheduled Data-Flow Graph

(The students has to choose one solution and has to generate the DFG of the

scheduled and allocated structure.)
8. Structural VHDL Description

Contents

I. Elliptic Filter

II. FIR Filter

-III. Aproximation of an Angles Cosinus

IV. Aproximation of an Angles Sinus

V. Fast Fourier Transformation

VI. Expansion of a 3*3 Determinant

VII. Differential Equation Solver

VIII. Conclusion

Elliptic Filter

Design a unit which can solve the 5 order elliptic filtering. The unit should work with
pipelined restarting period.

To solve the problems only the following elementary operations can be used:
Buffer, INC, DEC, +, -, *, DIV, MOD

The execution timeratios are (in the same order):
I / 2 / 2 /4 / 4 / 8 / 12 / 12 [clock cycle]

Tasks
The list of the students is located in the SEEGER server in the.

\U\GUESTMLOGIC\NAGYHF SUBDIRECTORY. In order to solve the following problems the
first students in the list should use the WinSam, and the second ones should use the PIPE design
tool. The subdirectories, where the design tools can be found, have the same name as the design
"tool has.

Solve the following problems
a) generate the Data-Flow Graph (DFG) from the problem
b) produce the behavioral description of the DFG in VHDL
c) produce the description of the DFG in the hardware description

language (HDL) of the given design tool (PIPE or WinSam)
d) Run the design tool with the input file that was generated in point c) with

different parameters such as:
* WinSam: (restarts/restartj) 14/16, 14/18, 14/20, 16/16.

16/20:
* PIPE: 14, 16, 18, 20, 22;

e) compare the results, analise the reasons of the output results and propose
a moution of the best design.

f) produce the structural description of the resulted structure and its controle in VHDL.
g) simulate the structural VHDL description was produced in point f)

The format of the ideal solution
a) The format of the report must be Win Word 2.0
b) The coverpage should contain:

* title of the task
* name and group of the student

c) The format of the pictures must be PCX
d) The final file (report) should be copied into the directory:

/U/GUEST/LOGIC/BEAD
(Once a file was created it cannot be deleted, but a second copy with

different name might be accepted.)
e) The name of the file must be: secondname.DOC
f) The date of the handing in is the date when the file is created.

The deadline of the handing in is the last day of the semester!

1.The Data-Flow Graph

it *2 S3u

add

W3 J7 x

2. The VHDL Behavioral Description

ENTITY IIR IS
PORT S Si, S2, S3, S4, S5, S6, S7, S8: IN INTEGER; J20, J2 1, J1 9, J1 3,

M08, J26, M07: OUT INTEGER);
END JIR;

SIGNAL
J01, J02, J03, J04, J05, JO, J07, J08, J09, J10, J11,J12, J13, J14, J1 5, J16, J1 7,

J18, J19, J20, J21, J22, J23, J24, M01, M02, M03, M04, M05, M06, M07,
M08 :INTEGER;

CONSTANT
Wi, W2, W3, W4, W5, W6, W7, W8: INTEGER;

ARCHITECTURE FUNC OF IIR IS

JOlI <=SlI + S2AFTER 4NS;
J02 <-55 + S6 AFTER 4NS;
J03 <=JO I + S3AFTER 4NS;
J04 <= J02 + S7 AFTER 4NS;
J05 <= J03 + S4 AFTER 4N5;

J06 <= J04 + S8 AFTER 4NS;
J07 <= J05 + J06 AFTER 4N5;
J08 <= J03 + M01 AFTER 4NS;
J09 <= J03 + J08 AFTER 4NS;
J10 <= M02 + J06 AFTER 4N5;

JilI <=J08 + J07 AFTER 4NS;
J12 <= Ji0 + J06 AFTER 4NS;
J13 <=J1 1 + J1O0AFTER 4NS;
J14 <= JO I + M03 AFTER 4NS;
J15 <= J01 + J14 AFTER 4NS;

J16 <= J14 + M03 AFTER 4NS;
J1 7<= J16 + Sli1 AFTER 4NS;
J 18 <= S 12 + M04AFTER 4NS;
J19 <= M05 + J06 AFTER 4NS;
J20 <= Ji8 + J14 AFTER 4NS;

J21 <= J17 +J19 AFTER 4NS;
J22 <= M06 + S9 AFTER 4NS;
J23 <= J10+ J22 AFTER 4NS;
J24 <= J22 + Sl10 AFTER 4N5;

J25 <= J02 + J23 AFTER 4NS;
J26 <= J22 + M07 AFTER 4NS;

MO <= J07 * W3 AFTER 8NS;
M02 <= J07 * W1 AFTER 8NS;
M03 <= W8 * J09 AFTER 8NS;
M04 <= W7 * J15 AFTER 8NS;
M05 <-= J17 * W6 AFTER 8NS;
M06 <= J12 * W2 AFTER 8NS;
M07 <= J24 * W4 AFTER 8NS;
M08 <= W5 * J25 AFTER 8NS;

END FUNC;

3. The Input File of the WinSam

restart-s 20
restart-f:28
net- num: 1
cover numn: 1
sync -weight: 99
max-net: 1
step : 1
not same:
add time : 0
in,0,O,0,0,8:add l,add l,add3,add5,add2,add2,add4,add6
addi 4,1,0,2,3 :add3,addl4,addl5
add2 4,1,0,2,2:add4,add25
add3 4,1,0,2,3 :add5,add8,add9
add4 4,1,0,2, 1: add6
add5 4,1,0,2,1 :add7
add6 4,1,0,2,3 :add7,add 1 0,add 12
add7 4,1,0,2,5:mul l,mullI,addlI 1,mul2,muI2*
add8 4,1,0,2,2:add9,addl 1
add9 4,1,0,2,2:mul3,mul3
addlO 4,1,0,2,3:addl2,addl3,add23
addl 14,1,0,2,1I:addl13
add12 4,1 ,O,2,2:muI6,muI6
add13 4,1,0,2,1:out
add14 4,1,0,2,3:addl5,addl6,add2O
addl15 4,1,0,2,2:mul4,mul4
addl16 4,1,0,2,2: addlI7,addl17
add1 7 4,1,0,2,3 :add2l1,mul5,mul5
addi 8 4,1,0,2,1 :add20
addl9 4,1,0,2,2:add2l,out
add20 4,1,0,2,1 :out
add2l 4,1,0,2,1 :out
add22 4,1,0,2,4 :add23 ,add26,add24,ad24
add23 4,1,0,2,1 :add25
add24 4,1,0,2,2:mul7,mul7
add25 4,1,0,2,3 :out,mul8,mul8
add26 4,1,0,2,1 :out
mull, 12,1,0,2,1 :add8
mul2,12,1,0,2,1 :addl0
mul3,12,1,0,2,1 :addl4,addl6
mul4,12,1,0,2,1 :addl8,addl8
mulS,12,1,0,2,1 I:addl19
mul6, 12,1,0,2,1 I:add22,add22
mul7,12,1,0,2,1 :add26,out
mul8,12,1,0,2, 1:out

out,O,O,O,8,O:

4. WinSam Results

restart s restart f elements buffers
14 18 27 39
16 16 30 38
14 20 27 41
16 20 27 41
20 20 31 17
14 24 26 34
16 24 26 34
20 24 32 15
24 24 32 15
14 28 22 28
16 28 22 28
20 28 25 9
24 28 25 9
28 28 25 9
16 30 21 25
20 30 26 5
24 30 26 5
28 30 26 5
30 30 26 5

5. The Input File of the PIPE

graph: ellip
input: si ,s2,s3,s4,s5,s6,s7,s8
output: t20,t21 ,tl,t13,t8,t2,t26,t3

processor add 4 2
processor mul 8 2
ji add(sl,s2)
j2 add(s5,s6)
j3 add(j1,s3)
j4 add(j2,s7)
j5 add(j3,s4)
j6 add(j4,s8)
j7 add(j5j6)
ml mul(j7,j7)
m2 mul(j7j7)
j8 add03,ml)
j 10 add(j6,m2)
j9 add(j3j8)
"jill addo8j7)
j12 add(j 1O,j6)
m3 mul(j9,j9)
j13 add(jll,j 10)
m6 mul(j 12j 12)
j 14 addG 1,m3)
j22 add(m6,m6)
j15 add(j l j14)
j16 addo 14,m3)
j23 addo 10,j22)
j24 add022,j22)
m4 mul(15j 15)
j17 add(j 16,j 16)
j25 add(j2,j23)
m7 mul024,j24)
j 18 add(m4,m4)
m5 mul(j 17,j 17)
m8 mul(j25,j25)
j26 add(j22,m7)
j20 add(j 18,j 14)
j 19 add(m5,m5)
j21 add(j17,j 19)
tljl9

t2 j25
t3 m7
t20 j20
t21 j21

t13j13
t8 m8
t26 j26

6 PIPE Results

R Processors Buffers
5 34 540

10 32 466
20 23 244
30 16 145
40 16 115
50 13 71
60 10 56

The Scheduled Data-Flow Graph

at m2 d as

ma a

f07

04 I

dI

JI22

4w

J212

8. Structural VHDL Description:

PACKAGE Global IS
SIGNAL CLK:Jnteger:=0;

SIGNAL bufO -en:Integer:=0O;
SIGNAL bufi -en:Integer:=0;
SIGNAL buf2_en:lnteger:=O;
SIGNAL buf3_-en:Integer:=0;
SIGNAL buf4_en:Integer:=0;
SIGNAL buf5_en:Integer:=0;
SIGNAL buf6_en:Integer:=0;
SIGNAL buf7_-en:Integer:=0;
SIGNAL buf8_en:Integer:=0;

SIGNAL addO 1_-en:Integer:=0;
SIGNAL add02_-en:Integer:=0;
SIGNAL add03_en:Integer:=O;
SIGNAL add04_en:Integer:=O; -

SIGNAL add05_en:lnteger:=0;
SIGNAL add06_-en:Integer:=0;
SIGNAL add07_en:lnteger:=O;
SIGNAL add08_-en:Integer:=0;
SIGNAL add09_en:Integer:=0;
SIGNAL add 10_en:Integer:=0;
SIGNAL addi 1_en:Integer:=0;
SIGNAL addl2_en:Integer:=O;
SIGNAL addi 3_en:Integer:=0;
SIGNAL addl 14_en:Integer:=0;
SIGNAL addlI5_en: Integer:=0;
SIGNAL addi 6_en:Integer:=0;
SIGNAL addl7_en:Integer:=0;
SIGNAL addl8_en:lnteger:=0;
SIGNAL addl19_-en:Integer:=0;
SIGNAL add20_-en:Integer:=0;
SIGNAL add2l en:Integer:=0;
SIGNAL add22_en:Integer:=0;
SIGNAL add23_)en:Integer:=0;
SIGNAL add24_en: Integer: =0;
SIGNAL add25_en:Integer:=0;
SIGNAL add26_en:Integer:=O;

SIGNAL mullI -en:Integer:=0;
SIGNAL mul2_-en:Integer:=O0;
SIGNAL mul3_en:Integer:=O;

SIGNAL mul4_en:Integer:=0;
SIGNAL mul5_-en:Integer:=O;
SIGNAL mul6_-en:Integer:=O;
SIGNAL mul7_en:Integer:=O;
SIGNAL mul8_en:Integer:=O;

CONSTANT period:Integer:=28;

CONSTANT bufO)_ofs:Integer:=25;
CONSTANT bufi-ofs:Integer:=29;
CONSTANT buf2_-ofs:Integer:=33;
CONSTANT buf3__ofs:Integer:=5;
CONSTANT buf4_-ofs:Integer:=9;
CONSTANT buf5_-ofs:Integer:=9;
CONSTANT buf6..ofs:Integer:=29;
CONSTANT buf7_ofs:lnteger:=53;
CONSTANT buf8_ofs:Integer:=49;

CONSTANT addO 1 ofs :Integer:=O;
CONSTANT addO2 -ofs:Integer:=O;
CONSTANT addO3 Ofs:Integer:=4;
CONSTANT addO4_ofs:Integer:=4;
CONSTANT addO5 ofs:Integer:=8;
CONSTANT addO6 ofs:Integer:=8;
CONSTANT addO7-ofs: Integer:= 12;
CONSTANT addO8 -ofs:Integer:=28;
CONSTANT addO9 ofs:Integer:=32;
CONSTANT add 10 ofs:Integer:=28;
CONSTANT addi Ilofs:lnteger:=32;
CONSTANT add I 2-ofs:Integer:=3 2;
CONSTANT add 1 3ofs:lnteger:=3 6;
CONSTANT add14 -ofs:Integer:=48;
CONSTANT add15 ofs:lnteger:=52;
CONSTANT add16 6ofs :Integer:=52;
CONSTANT addlI7-ofs:Integer:=5 6;
CONSTANT addI8 8ofs:lnteger:=68;
CONSTANT add19 9ofs:Integer:=72;
CONSTANT add2O ofs:Integer:=72;
CONSTANT add2 Iofs:Integer:=76;
CONSTANT add22 ofs:Integer:=48;
CONSTANT add23_ofs:Integer:=52;
,CONSTANT add24_ofs:Integer:=52;
CONSTANT add25_ofs:Integer:=56;
CONSTANT add26 ofs :Integer:=6 8;

CONSTANT mullI -ofs:Integer:=16;
CONSTANT mul2_ofs:Integer:=16;
CONSTANT mul3_ofs:Integer:=36;

CONSTANT mul4_-ofs:Integer:=56;
CONSTANT mul5_ofs:Integer:=60;
CONSTANT mul6_-ofs:Integer:=36;
CONSTANT mul7_ofs:Integer:=56;
CONSTANT mul8_ofs:Lnteger:=60;

FUNCTION start oset, act:Integer) RETURN Boolean;
END Global;

PACKAGE BODY Global IS

FUNCTION start(ofset, act: Integer)RETURN Boolean IS
BEGIN
IF act<offset THEN

RETURN FALSE;
ELSIF (act-offset) MOD period=O THEN

RETURN TRUE;
ELSE

RETURN FALSE;
END IF;
END start;

END Global;

USE Global.ALL;

ENTITY scheduler IS
END;

ARCHITECTURE sched OF scheduler IS
BEGIN
sched proc:
PROCESS
VARIABLE act: Integer:=O:
BEGIN

IF start(buffO ofs~act) TH-EN bufm_en<=l ;ELSE buff)_en<=O; END IF;
IF start(bufl. ofs,act) THEN bufi. en<=1 ;ELSE bufi en<0O; END IF;
IF start(buf2_ofs.act) THE'N buf2 en<=1 ;ELSE buf2_en<=O; END IF;
IF start(buf3 ofs,act) THEN- buf3_en<=l ;ELSE bufj_ýen<2=O; END IF;
IF start(buf4 ofs.act) THIEN buf4_en<=l ;ELSE buf4_en<0O; END IF;
IF start(buf5_ofs.act) THEN buf5_-en<=l ;ELSE buf5_-en<0O; END IF;
IF start(buf6 ofs,act) THEN buf6_en<=1 ;ELSE buf6_en<=0; END IF;
IF start(buf7 -ofs,act) THEN buf8_en<=1;ELSE buf7_en<=0; END IF;
IF start(buf8 ofs.act) THEN buf8_en<=l ;ELSE buf8_en<=0; END IF;

*IF start(addOlI ofs,act) THEN addOl-en<=LELSE addOl en<=O; END IF;
IF start(addO2 ofs,act) THEN addO2_en<=1;ELSE addO2_en<=O; END IF;
IF start(addO3 ofs,act) THEN addO3_en<=l ;ELSE addO3 -en<=O; END IF;
IF start(addO4 -ofs,act) THEN addO4_en<=1;ELSE addO4_en<=O; END IF;
IF start(addO5-ofs,act) THEN addO5_en<1 ;ELSE addO5_en<=0; END IF;
IF start(addO6 ofs,act) THEN addO6_en<=1 ;ELSE addO6_en<=O; END IF;
IF start(addO7 ofs,act) THEN addO7_en<=1;ELSE addO7_en<=O; END IF;
IF start(addO8 ofs,act) THEN addO8_en<1 ;ELSE addO8-en<=O; END IF;
IF start(addO9 ofs,act) THEN addO9_en<1l;ELSE addO9_en<=O; END IF;
IF start(addl1O ofs,act) THEN addlO-en<=F;ELSE addlO-en<=O; END IF;
IF start(addl 1 ofs,act) THEN addi 1_en<=1;ELSE addi 1_en<=O; END IF;
IF start(addl2 ofs,act) THEN addl2_en<=1;ELSE addl2_en<=O; END IF;
IF start(addl3 ofs,act) THEN addl3_en<1I;ELSE addl-3_-en<=O; END IF;
IF start(addl4 ofs,act) THEN addl4_en<=l;ELSE addl4 en<=O; END IF;
IF start(addl15 -ofs,act) THEN addlI5_en<=1I;ELSE addlI5_en<=O; END IF;
IF start(addl6 ofs,act) THEN addl6_en<=1;ELSE addl6_en<=O; END IF;
IF start(addl7 ofs,act) THEN addl7_en<=1;ELSE addl7_en<=O; END IF;
IF start(addl18 -ofs,act) THEN addlI8_en<=1I;ELSE addlI8_en<0O; END IF;
IF start(addl9 ofs,act) THEN addl9_en<=1;ELSE addl9 en<=O; END IF;
IF start(add2O ofs,act) THEN add2O-en<=1 ;ELSE add2O-en<=0; END IF;
IF start(add2l -ofs~act) THEN add2l-en<=1;ELSE add2l-en<=O; END IF;
IF start(add22_ofs,act) THEN add22_en<1 ;ELSE add22_en<=O; END IF;
IF start(add23 -ofs,act) THEN add23_en<=1 ;ELSE add213_en<=0: END IF;
IF start(add24_ofs,act) THEN add24_en<=1;ELSE add24 en<=O; END IF;
IF start(add25 -ofs,act) THEN add25_en<=1 ;ELSE add25_en<=O; END IF;
IF start(add26 ofs,act) THEN add26_en<=1 ;ELSE add26_en<0O; END IF;

IF tr~ulosat HNml~n= ES ule<O N F

IF start(mul2 ofs,act) THEN mul2_en<=l;ELSE mul2_en<=-O; END IF;
IF start(mul3 ofs,act) THEN mul3_en<=l ;ELSE mul3_-en<0:- END IF;
IF. start(mul4 ofs,act) THEN mul4_en<=l ;ELSE mul4_en<=~O: END IF;
IF. start(mul5 ofs,act) THEN mul5_en<=l;ELSE mul5_en<0O: END IF;
IF start(mul6 ofs,act) THEN mul6_en<=1 ;ELSE mul6_enK=O; END IF;
IF start(mul7 ofs,act) THEN mul7_en<=l ;ELSE mul7_en<=O; END IF;
IF start(mul8 ofs,act) THEN mul8_en<=l ;ELSE mul8_en<=O; END IF;

act :=act+l;
CLK<=act;
IF act--lOO THEN WAIT;-- 100 periodus

END PROCESS;

END sched;

FIR Filter

Design a unit which can solve the 8th" order FIR filtering. The unit should work with
pipelined restarting period.

To solve the problems only the following elementary operations can be used:
Buffer, INC, DEC, +, -, *, DIV MOD

The execution timeratios are (in the same order):
1 / 2 / 2 / 4 / 4 / 8 /12 / 12 [clock cycle]

Tasks
The list of the students is located in the SEEGER server in the

\UL\GUEST\LOGIC\NAGYHF SUBDIRECTORY. In order to solve the following problems the
first students in the list should use the WinSam, and the second ones should use the PIPE design
tool. The subdirectories, where the design tools can be found, have the same name as the design
tool has.

Solve the following problems
a) generate the Data-Flow Graph (DFG) from the problem
b) produce the behavioral description of the DFG in VHDL
c) produce the description of the DFG in the hardware description

language (HDL) of the given design tool (PIPE or WinSam)
d) Run the design tool with the input file that was generated in point c) with

different parameters such as:
* WinSam: (restart s/restart_) 14/16, 14/18, 14/20, 16/16,

16/20;
* PIPE: 14, 16, 18, 20, 22;

e) compare the results, analise the reasons of the output results and propose
a moution of the best design.

f) produce the structural description of the resulted structure and its controle in VHDL.
g) simulate the structural VHDL description was produced in point f)

The format of the ideal solution
a) The format of the report must be Win Word 2.0
b) The coverpage should contain:

* title of the task
. name and group of the student

c) The format of the pictures must be PCX
d) The final file (report) should be copied into the directory:

/U/GUEST/LOGIC/BEAD
(Once a file was created it cannot be deleted, but a second copy with

different name might be accepted.)
e) The name of the file must be: secondname.DOC
f) The date of the handing in is the date when the file is created.

The deadline of the handing in is the last day of the semester!

1.The Data-Flow Graph

I I

N 31 v g i

F . 14 75 .6 Y.

2. The VHDL Behavioral Description

ENTITY mul IS
PORT (x: IN Adat; y: OUT Adat); END mul;

ARCHITECTURE vis OF mul IS
BEGIN

y <= x*w AFTER 8ns
END vis

ENTITY add IS
PORT (x,y: IN Adat; z: OUT Adat); END add;

ARCHITECTURE vis OF add IS
BEGIN

z <= x+y AFTER 4ns
END vis;

ENTITY sub IS
PORT (x, y : IN Adat ; z: OUT Adat) ; END sub;

ARCHITECTURE vis OF sub IS
BEGIN

z <= x-y AFTER 4ns
END vis

ENTITY fft IS
PORT (xO,xl,x2,x3,x4,x5,x6,x7: IN Adat; yO, yl, y2, y3, y4, y5, y6 , y7: OUT

Adat);
END fft;

ARCHITECTURE struc OF fft IS
COMPONENT mul PORT (x: IN Adat; y: OUT Adat); END COMPONENT
COMPONENT add PORT (x,y: IN Adat; z: OUT Adat); END COMPONENT
COMPONENT sub PORT (x,y: IN Adat; z: OUT Adat); END COMPONENT

SIGNAL ll,ml2,ml3,ml4,wlyl,wly2,w2yl,w2y2,w3 yl,w3 y2,w4yl,w4y2,
m21,m22,m23,m24,w5yl,w5y2,w6yl,w6y2,w7ylw7y2,w8yl,w8y2,m3 I.m32.m3 3 ,m34;
BEGIN
mll: mul PORT MAP(x4);
m12: mul PORT MAP(x6);
m13: mul PORT MAP(x5);
m14: mul PORT MAP(x7);

wlyl: sub PORT MAP (xO,ml 1);
w2yl: sub PORT MAP (x2,m12);
w3yl: sub PORT MAP (xl,ml3);
w4yl: sub PORT MAP (x3,m14);
wly2: add PORT MAP (xO,ml 1);
w2y2: add PORT MAP (x2,m12);
w3y2: add PORT MAP (xl,m13);
w4y2: add PORT MAP (x3,m14);

m21: mul PORT MAP(w2yl);
m22: mul PORT MAP(w2y2);
m23: mul PORT MAP(w4yl);
m24: mul PORT MAP(w4y2);

w5yl: sub PORT MAP (wlyl,m2 1);
Iw 1I: sub PORT MAP (wly2,m22);
oyl:sbPR A wy~2)

w~yl: sub PORT MAP (w3y2,m24);
w~y2: add PORT MAP (wlyl,m2 1);
w~y2: add PORT MAP (wly2,m22);
w~y2: add PORT MAP (wlyI,m23);
w~y2: add PORT MAP (w3y2,m24);

m3 1: add PORT MAP (w~yl); 4)

m321: mul PORT MAP(w~yI);
m32: mul PORT MAP(w~y2);
m33: mul PORT MAP(w~y2);

m34l: sub PORT MAP (w~yl23);

wyl~y: sub PORT MAP (w~yl,m321);
wilyl: sub PORT MAP (w~y2,m33);
wllyl: sub PORT MAP (w~y2,m34);
wl~y2: add PORT MAP (w~yl,m3 1);
wl~y2: add PORT MAP (w~yl,m321);
wlly2: add PORT MAP (w~y2,m33);
w12y2: add PORT MAP (w~y2,m34);

END struct

3. The Input File of the WinSamf

restart -s:6 restart f:6
net-num:1
cover num:1
sync weight:4
max-net:1
step:1
not-same:1
add time:O
in,O,O,O,O,2:ina~inb
ina,O,O,O,I,6:ml,m2,m3 ,m4,sI,s2
inb,O,O,O,1,6: s3,s4,al,a2,a3,a4
mI,8,1,O,1,2:sl,al
m2,8,1 ,O,1,2:s2,a2
m3 ,8,1,O,I,2:s3 ,a3
m4,8,1 ,O,1,2:s4,a4
si ,4, 1 ,,2,2:s5,a5
s2,4, 1 ,,2,1:m5
s3,4,1,O,2,2:s7,a7
s4,4,1,0,2, 1=:7
al,4,1,O,2,2:s6,a6
a2,4,1,O,2,1 :m6
a3,4,1 ,O,2,2:s8,a8
a4,4, 1 ,,2,I:m8
m5,8,1,O,1,2:s5,a5
m6,8,1,O,I,2:s6,a6
m7,8,1,O,1,2:s7,a7
m8,8,1,O,1,2:s8,a8
s5,4,1,O,2,2:s9,a9
s6 ,4,l,O,2,2:sl O,al 0
s7,4,1,O,2,1 :m9
s8,4,1,O,2,1 :mlO
a5,4,1 ,0,2,2:sll,all
a6,4,1,O,2,2:sl2,al2
a7,4,1,O,2,1 :m~l
a8,4,1,O,2,1 :m12
m9,8,1,0,1,2:s9,a9
ml 0,8,1,0,1,2:sl O,aIO
mll,8, 1,0,1,2:sll,all
m12,8,1,0,1 ,2:s12,a12
s9,4,l ,0,2,1:out
slO,4,1,0,2,1 :out
sll,4,1,0,2,1 :out
s12,4,I,0,2,1 :out
a9,4,1,O,2,1:out

alO,4,1,O,2,1 :out
all,4,1,O,2, 1 :out
a12,4,1,O,2,1 :out
out,O,O,O,8,O:

4. WinSam Results

r s r f processors buffers
6 10 36 60
7 10 36 60
9 12 36 56
10 10 36 56
10 13 36 56
12 12 36 56

12 15 36 48
12 18 24 40
13 .13 36 16
13 15 32 16
14 14 36 16
15 15 32 16

5. The Input File of the PIPE

input: xO,xl,x2,x3,x4,x5,x6,x7
output: yO,yl,y2,y3 ,y4,y5,y6,y7

processor add 4 2
processor sub 4 2
processor mul 8 1

mll mul (x4)
m12 mul (x6)
m13 mul (x5)
m14 mul (x7)

wlyI sub (ml 1, xO)
w2yl sub (m12, x2)
w3yl sub (m13, xl)
w4yl sub (m14, x3)

wly2 add (ml 11, xO)
w2y2 add (m12,x2)
w3y2 add (m13, xl)
w4y2 add (m14, 03

m21 mul (w2yl)
m22 mul (w2y2)
m23 mul (w3yl)
m24 mul (w3 y2)

w~yl sub (m21, wlyI)
w6yl sub (m22,wly2)
w7yl sub (m23,w3yI)
w8'yl sub (m24,w3y2)

w5y2 add (m21,wlyl)
w6y2 add (m22,wly2)
w7y2 add (mi23, w3yl)
w8y2 add (in.24, w3y2)

m3 1 mul (w5yl)
m32 mul (w6yl)
m33 mul (w5y2)
m34 mul (w6y2)

w9yl1 sub (m3 1, w7yl1)
wlOyl sub (m32,w~yl)
wi lyl sub (m33,w7y2)

wl2yl sub (m34,w8y2)

w9y2 add (m3 1, w7yl)
wlOy2 add (m32,w8yl)
wlly2 add (m33,w7y2)
w12y2 add (m34,w8y2)

yO w9yl
yl w9y2
y2 wlOyl
y3 wlOy2
y4 wllyl
y5 wl ly2
y6 wl2yl
y7 w12y2

6 PIPE Results

R L n(add) n(sub) n(mul) buff cost
6 39 12 12 12x2 436 724
8 48 12 12 12x2 340 628
10 41 10 10 12 208 360
11 41 8 8 12 184 344
12 41 10 10 12 160 336
13 36 12 12 12 64 224
14 36 10 10 12 32 256
15 36 8 8 12 16 192
16 36 8 8 12 0 176
17 36 *8 .8 12 0 160
18 36 8 8 12 0 160
19 36 8 8 12 0 160
20 36 6 6 12 0 144
26 36 8 8 8 0 128
30 36 4 4 8 0 96

The Scheduled Data-Flow Graph

.0 A

.3,

J , a N t

. .

91 "

Y4 34 3 .4 q

.:?:..).:3,

8. Structural VHDL Description:

ENTITY mul IS
PORT (x: IN Adat; y: OUT Adat); END mul;

ARCHITECTURE vis OF mul IS
BEGIN

y <= x*w AFTER 8ns END vis

ENTITY add IS
PORT (x,y: IN Adat; z: OUT Adat); END add;

ARCHITECTURE vis OF add IS
BEGIN

z <= x+y AFTER 4ns END vis;

ENTITY sub IS
PORT (x,y: IN Adat; z: OUT Adat); END sub;

ARCHITECTURE vis OF sub IS
BEGIN

z <- x-y AFTER 4ns
END vi 5

ENTITY buf IS
PORT (x: IN Adat; y: OUT Adat); END buf;

ARCHITECTURE vis OF buf IS
BEGIN

y <= x AFTER 4ns END vis

ENTITY fft IS
PORT (xO,xl,x2,x3,x4,x5,x6,x7 IN Adat; yO, yl, y2, y3, y4, y5, y6, y7 OUT Adat);

END fft;

ARCHITECTURE struc OF ffit IS
COMPONENT mul PORT (x: IN Adat; y: OUT Adat);
END COMPONENT
COMPONENT buf PORT (x: IN Adat; y: OUT Adat);
END COMPONENT
COMPONENT add PORT (x,y: IN Adat; z: OUT Adat);
END COMPONENT

COMPONENT sub PORT (x,y: IN Adat; z: OUT Adat);
END COMPONENT
SIGNAL 11,m12,m13,m1l4,wlyl,wly2,w2yl,w2y2,w3yI,w3y2,w4yl,wN4y2,
m2l1,m22,m23 ,m24,w5yI,w5y2,w6yl,w6y2,w7yl,w7y2,w8yI,w8y2.m3 I ,m3 2,
m3 3,m34,bl,b2,b3,b4,b5,b6,b7,b8,b9,blO,bll,b12,b13 ,b14,b15, b16;

BEGIN
ml : mul PORT MAP(x4);
m12: mul PORT MAP(x6);
m13: mul PORT MAP(x5);
m14: mul PORT MAP(x7);

wlyl: sub PORT MA (xO,ml 1);
w2yl: sub PORT MAP (x2,m12);
w3yl: sub PORT MA-P (xl,m13');
w4yl: sub PORT MAP (x3,m14);
wly2: add PORT MAP (xO,m 11);
w2y2: add PORT M.AP (x2,m12);
w3y2: add PORT MA-P (xI,m13);
w4y2: add PORT MAP (x3,m14);

bi: buf PORT MAP(wlyl);
b2: buf PORT MAP(wlyl);
b3: buf PORT MAP(wly2);
b4: buf PORT MAP(wly2);
b5: buf PORT MAP(w3 yl);
b6: buf PORT MAP(w-3 yl);
b7: buf PORT MAP(w'y2);
b8: buf PORT MAP(w3y2);

m21: mul PORT MAP(w2yl);
m22: mul PORT MAP(w2y2);

m2-3: mul PORT MAP(w4yI);
m24: mul PORT MAP(w4y2);

w~yl: sub PORT MAP (bl,m2 1);
w6yl: sub PORT MAP (b3,m22);
w7yl: sub PORT MA (b5,m2'3);
w8yl: sub PORT MAP (b7,m24);
w5y2: add PORT MAP (b2,m2 1);
w6y2: add PORT MAP (b4,m22);
w7y2: add PORT MAP (b6,m23);
w8y2: add PORT MAP (b8,m2-4);

m3 1: mul PORT MAP(w7yl);
m32: mul-PORT MAP (w8yl);
m33: mul PORT MAP(w7y2);
m34: mul PORT MAP(w8y2);

b9: buf PORT MAP(w5yl)
blO: buf PORT MAP(w5yl)
bil: buf PORT MAP(w6yI)
b12: buf PORT MAP(w6yl)
b13: buf PORT MAP(w5y2)
b14: buf PORT MAP (w5y2)
b15: buf PORT MAP(w6y2)
b16: buf PORT MAP(w6y2)

w9yl: sub PORT MAP (b9,m3 1);
wlOyl: sub PORT MAP (bll,m32);
wilyl: sub PORT MAP (b13,m33);
wl2yl: sub PORT MAP (b15,m34);
w9y2: add PORT MAP (blO,m3 1);
wlOy2: add PORT MAP (b12,m32);
wlly2: add PORT MAP (b14,m3)3);
w12y2: add PORT MAP (b16,m34);

END stuc

Aproximation of an angles cosinus

Design a unit which can calculate the cosinus of an angle which is between 0 and 1-1. The
unit should work with pipelined restarting period.

To solve the problems only the following elementary operations can be used:
Buffer, INC, DEC, +, -, *, DIV, MOD

The execution timeratios are (in the same order):
1 / 2 / 2 / 4 / 4 / 8 / 12 / 12 [clock cycle]

Tasks
The list of the students is located in the SEEGER server in the

\U\GUEST\LOGIC\NAGYHF SUBDIRECTORY. In order to solve the following problems the
first students in the list should use the WinSam, and the second ones should use the PIPE design
tool. The subdirectories, where the design tools can be found, have the same name as the design
"tool has.

Solve the following problems
a) generate the Data-Flow Graph (DFG) from the problem
b) produce the behavioral description of the DFG in VHDL
c) produce the description of the DFG in the hardware description

language (HDL) of the given design tool (PIPE or WinSam)
d) Run the design tool with the input file that was generated in point c) with

different parameters such as:
* WinSam: (restarts/restartj) 14/16, 14/18, 14/20, 16/16,

16/20:
* PIPE: 14, 16, 18, 20, 22;

e) compare the results, analise the reasons of the output results and propose
a moution of the best design.

f) produce the structural description of the resulted structure and its controle in VHDL.
g) simulate the structural VHDL description was produced in point f)

The format of the ideal solution
a) The format of the report must be Win Word 2.0
b) The coverpage should contain:

* "title of the task
* name and group of the student

c) The format of the pictures must be PCX
d) The final file (report) should be copied into the directory:

/U/GUEST/LOGIC/BEAD
(Once a file was created it cannot be deleted, but a second copy with

different name might be accepted.)
e) The name of the file must be: secondname.DOC
f) The date of the handing in is the date when the file is created.

The deadline of the handing in is the last day of the semester!

The Data-Flow Graph

s!

411

2 S9

si o

S!iC!

99

1-1

Z. i e v iuie aviora msrpion

ENTITY cosszam IS
PORT (x: IN Integer; z : OUT Integer);
END cosszam;

ARCHITEC'I'URE func OF cosszam IS
SIGTNAL Si, S2, S3, S4, S5, S6, S7, S8, S9, S10, Sll, S12, 513,
S14: Integer ; BEGIN

S I <= (x*x)/256 AFTER 8 ns; -- multi
S2 <= {S1*S1)/256 AFTER 8 ns; -- mult2
S3 <= (S1*S2)/256 AFTER 8 ns; -- mult3
S4 <= (S1*S3)/256 AFTER 8 ns; -- mult4
SS <= S4/40320 AFTER 12 ns; -- divl
S6 <= (S1"*5)/256 AFTER 8 ns; -- mult5
S7 <= S6/90 AFTER 12 ns; -- div2
S8 <= S1/2 AFTER 12 ns; -- div3
S9 <= S2/24 AFTER 12 ns; -- div4
S10 <= S3/720 AFTER 12 ns; -- div5
S1 <= 256-S8 AFTER 4 ns; -- sub 1
S12 <= S11+$9 AFTER 4 ns; -- add1
S13 <= S12-S1O AFTER4 ns; - sub2
S14 <= S13+S5 AFTER4 ns; -- add2
z <= S14-S7 AFTER 4 ns; -- sub3

END func;

-2-

3. The Input File of the WinSamn

restart-s: 15
restart-f: 15
net-num: 1
cover-num: 1
sync weight:4
max-net: 1
step: 1
not-same: 1
add-time:0
in,0,0,0,0, 1:mull
mull1,8,1,0,1,6:divl1,mu12,mul2,mu13,mul4,mu15
divl,12,1,0,1,1:subl
sub 1,4, 1,0, 1, 1:addl
mul2,8, 1,0,2,2:div2,mul3
div2, 12, 1,0, 1,1:addl
addi ,4, 1,0,2,1 :sub2
mul3, 8,1 ,0,2,2:div3,mul4
div3,12, 1,0, 1, 1:sub2
sub2,4, 1,0,2, 1:add2
mul4,8, 1,0,2,1 :div4
div4, 12, 1,0, 1,2:add2,mul5
add2,4,1,0,2, 1:sub3
mul5,8, 1,0,2,1 :div5
div5, 12, 1,0,1,1:sub3
sub3,4, 1,0,2,1 :out
out,0,0,0,-1,0:

-3 -

4. WinSam Results

Restart s Restart f Processzoro Bufferek
k

14 14 15 18
14 20 12 15
14 26 11 32
14 32 8 11
22 22 14 4
26 26 14 2
26 32 13 2
26 38 12 1
36 36 12 1
36 48 9 1

-4-

5. The Input File of the PIPE

#Cos szaimitds
graph:cos
input.:x
output:result
processor mult 8 2
processor div 12 2
processor add 4 2
processor subb 4 2
s I mult(x,x)
s2 mult(s 1,s 1)
s3 mult(sl,s2)
s4 mult(sl,s3)
s5 div(s4,s4)
s6 mult(sl,s5)
s7 div{s6,s6)
s8 div(sl,sl)
s9 div(s2,s2)
slO div(s3,s;)
slII sub {s8,s8)
s12 add(s9,s 11)
s13 sub(s12,sl1O)
s14 add(s5,s 13)
re sub(s14,s7)
result re

-5-

6 PIPE Results

Restart Processors Cost Buffer Latency
period nu.

(R) div(5) mult(5) add(2) sub(3) (C) (B) (L)
68 2 3 1 1 56 0 68
51 3 3 1 1 68 2/88 68
34 4 5 1 1 96 19/88 68
26 5 .5 1 2 112 34/88 68
23 5 5 1 3/2 116/112 44/88 68
20 5 5 2 2 116 66/98 71
16 5 5 2 2 120 79/119 75
14 5 5 2 3/2 120/116 87/119 75
13 10 5 1 2 172 150/17 87

0
11 10 5 2 2 176 142/13 79

8

-6-

7. The Scheduled Data-Flow Graph

2!1

A!51

31s4buU 2 jr

I. 7 -

8. Structural VHDL Description:

ENTTIY cosszam IS
PORT {x : IN Integer; z: OUT Integer); END cosszam;

ARCHITECTURE func OF cosszam IS
SIGNAL
SI,$2,53,54,55,56,57,S8,S9,510,S 11,S12,513,SI4,515,S 16,517,S18
Integer; SIGNAL
S19,S20,521,S22,S23,S24,525,526,S27,527,$28,S29,530,531,532:
Integer; SIGNAL 533,S34,535,S36 : Integer;
BEGIN
S1 <=(x*x)/256 AFTER 8 ns; --mull
S2 <=S 1 AFTER I ns; --bufi
S3 <=S 1 AFTER 1 ns;--buf2
S8 <=S7 AFTERI ns; --buf5
S9 <=S1 AFTER 19ns; --buf6
S1O <=(58*'9)/256 AFTER 8 ns; --mul4
S11 <=S 10 AFTER Ins; --buf7
S 12 <=S11/40320 AFTER 12ns; --divI
S13 <=S12 AFTER Ins; --buf8
S14 <=S I AFTER Ins; --buft
S15 <=(S13*S14)/256 AFTER 8ns; --mul5
S 16 <=S15 AFTER ins; --buflO
S17 <=S16/90 AFTER 12ns; --div2
S18<=S1 AFTER Ins; --bufi I
S19 <=S18/2 AFTER 12ns; --div3
S20 <=S4 AFTER ins; --buft2
S21 <=520124 AFTER 12ns; --div4
S22 <=S7 AFTER Ins; --bufl3
S23 <=S221720 AFTERI 2 ns; --div5
S24 <=S19 AFTER Ins; --buf14
S25 <=256-S24 AFTER 4ns; --subl&3
S26 <=S25 AFTER 5ns; --bufi5
S27 <=S21 AF'rER Ins; --bufl¢
S28 =S2¢+,S27 AFTER 4ns; --addl
S29 =528 AFTER 5ns; --bufl7
S30 =S23 AFTER Ins; --bufl8
S31 <=S29-S30 AFTER 4ns; --sub2
S32 <=S31 AFTER 5ns; --buf19
S33 <=S 12 AFTER ins; --buf20
S34 <=$32+$33 AFTER 4as; --add2
S35 <=S34 AFTERI Bns;.,-buf21

-8-

z <=S35-S36 AFTER 4n.s; --subl8c3
END func;

-9-

Aproximation of an angles sinus

Design a unit which can calculate the sinus of an angle which is between 0 and H. The
unit should work with pipelined restarting period.

To solve the problems only the following elementary operations can be used:
Buffer, INC, DEC, +, -, *, DIV MOD

The execution timeratios are (in the same order):
I / 2 / 2 /44 /4 / 8 /12 / 12 [clock cycle]

Tasks
The list of the students is located in the SEEGER server in the

\U\GUEST\LOGIC\NAGYHF SUBDIRECTORY. In order to solve the following problems the
first students in the list should use the WinSam, and the second ones should use the PIPE design
tool. The subdirectories, where the design tools can be found, have the same name as the design
tool has.

Solve the following problems
a) generate the Data-Flow Graph (DFG) from the problem
b) produce the behavioral description of the DFG in VHDL
c) produce the description of the DFG in the hardware description

language (HDL) of the given design tool (PIPE or WinSam)
d) Run the design tool with the input file that was generated in point c) with

different parameters such as:
* WinSam: (restart-s/restartj) 14/16, 14/18, 14/20, 16/16,

16/20;
* PIPE: 14, 16, 18, 20, 22;

e) compare the results, analise the reasons of the output results and propose
a moution of the best design.

f) produce the structural description of the resulted structure and its controle in VHDL.
g) simulate the structuiral VHDL description was produced in point f)

The format of the ideal solution
a) The format of the report must be Win Word 2.0

"b) The coverpage should contain: -

* title of the task
* name and group of the student

c) The format of the pictures must be PCX
d) ,The final file (report) should be copied into the directory:

/U/GUEST/LOGIC/BEAD
(Once a file was created it cannot be deleted, but a second copy with

different name might be accepted.)
e) The name of the file must be: secondname.DOC
f) The date of the handing in is the date when the file is created.

The deadline of the handing in is the last day of the semester!

1. The Data-Flow Graph

•---

. !.

2. The VHDL Behavioral Description

PACKAGE Global IS
TYPE Vektor IS ARRAY 0 TO 8 OF INTEGER;
END Global;
USE Global.ALL;
ENTITY Fir szuro IS

PORT (x: IN Vektor; y: OUT INTEGER);
END Fir-szuro;
ARCHITECTURE vis OF Fir szuro IS

SIGNAL a,b Vektor(1 TO 8);
SIGNAL c Vektor(1 TO 4);
SIGNAL d Vektor(1 TO 2);
CONSTANT w: Vektor(1 TO 8);

BEGIN
PROCESS

VARIABLEj,k• INTEGER;
BEGIN

FOR i IN I TO 8 LOOP
a(i)<= x(i-1) + x(i) AFTER 4ns;
b(i)<= a(i) * w(i) AFTER 8ns;
IF (i MOD 2)=0 THEN j=i/2; co)<= b(i-1) + b(i) AFTER 4ns; ENDIF;
IF (i MOD 4)=O THEN k=i/4;d(k)<= c(i/2-1) + c(i/2) AFTER 4ns; ENDIF;

END LOOP;
END PROCESS;
y<= d(1) + d(2) AFTER 4ns;

END vis;.

3. -- The Input File of the WinSam

restart:9
latency: 10 net num:1I
cover num:1I
sync weight:4
max-net: 1
step: 1
not sanze:1I
add time:O
in,0,0,0,0,8 :addl,add2,add3 ,add4,add5,add6,add7,add8
addl,4,1,0,2,1 :mull
add2,4,1,0,2, 1:mul2
add3,4,1,0,2, 1:mul3
add4,4,1,0,2,1 :mul4
add5,4,1 ,0,2,1 :mul5
add6,4, 1,0,2,1 :mul6
add7,4,1,0,2,1I:mul7
add8,4, 1,0,2,1 :mul8
mull,8,1,0,1,1 :add9
mul2,8,1,0,1,1 :add9
mul3,8,1,0,1,1:addl0
mul4,8,1,0,1,1:addl0
mul15,8, 1,0, 1, 1: addlIl
mul16,8, 1,0, 1,1I:addl 11
mul7,8,1,0,1,1 :addl2
mul8,8,1,0,1,1 :addl2
add9,4,1,0,2,1 :addl3
addl10,4,1,0,2,1 :addl13
add 11,4,1,0,2, 1: addl14
addl12,4,1,0,2,1: :addl14
addl 3,4,1,0,2,1: :addl15
addl14,4,1,0,2,1: :addl15
addl5,4,1,0,2,1 :out
out,0,0,O, 1,0:

4. WinSam Results

•ii• A

5. The Input File of the PIPE

graph: szuro,
input:xO,xl,x2,x3 ,x4,x5 ,x6,x7,x8
output:result

processor add 4 2
processor mult 8 2

al. add (xO,xl)
a2 add (xl,x2)
a3 add (x2,x3)
a4 add (x3,x4)
a5 add (x4,x5)
a6 add (x5,x6)
a7 add (x6,x7).
a8 add (x7,x8)

ml mult (al,al)
m2 mult (a2,a2)
m3 mult (a3,a3)
m4 mult (a4,a4)
m5 mult (a5,a5)
m6 mult (a6,a6)
m7 mult (a7,a7)
m8 mult (a8,a8)

allI add (ml,m2)
a12 add (m3,rn4)
a13 add (m5,m6)
a14 add (m7,m8)

a21. add (a 1l,a 12)
a22 add (a13,al4)

re add (a2l,a22)
result re

6 PIPE Results

R 6 9 11 12 13 14 18 21 24
L 27 30 26 26 24 24 24 24 24

P(add) 15 15 14 14 14 14 14 11 8
p(mul) 16 16 8 8 8 8 8 8 8

B 110 44 16 16 0 0 0 0 0

7. The Scheduled Data-Flow Graph

FIR filter INPUT

24-27 28-31 32-35 36-39
4 4 4 4

1 2 5 6 7

448 57 9
40 41 42 43 4445 4647 .7980, 58 59

"1 1 1 2 2 12 2

9 10 11 12 13 14 15 16

60 6 62 63 64 6567 68 6978

1 1 4 1 1

8. Structural VHDL Description:

PACKAGE Global IS
TYPE Vektor IS ARRAY 0 TO 38 OF INTEGER;
SIGNAL v en IS Vektor:=(0 TO 38 => 0);

CONSTANT v offs IS Vektor:=(0 TO 7 ->O; 8 TO 15 =>4;16 TO 23 =>5; 24 TO

31=>13; 32 TO 35 =>14;

36 TO 37 =>18; 38 =>22);
CONSTANT period: INTEGER:=10;
SIGNAL Clk: INTEGER:=0;

"FUNCTION Start(offsetact: INTEGER) RETURN BOOLEAN;

END Global;

PACKAGE BODY Global IS

FUNCTION Start(offset,act" INTEGER) RETURN BOOLEAN IS

BEGIN

IF act<offset THEN RETURN FALSE;

ELSIF (act-offset) MOD period=0 RETURN TRUE;

ELSE RETURN FALSE;

END IF;

END Start;

END Global;

ENTITY Scheduler IS
END;

ARCHITCTURE sched OF Scheduler IS

BEGIN.

PROCESS

VARIABLE act: INTEGER:=0;
BEGIN
FOR i IN 0 TO 38 LOOP

IF Start(v offs(i),act) THEN v en(i)<=l; ELSE v en(i)<=0; END IF;

END LOOP;

act:= act + 1;
Global. Clk<=act;

END PROCES 5;

END sched; ,

ENTITY buff IS

GENERIC (t: INTEGER :=1);

PORT (Clk,en,x: IN INTEGER; y: OUT INTEGER);
END buff;
ARCHITECTURE func OF buff IS
BEGIN

PROCESS(Clk,en)
VARIABLE started: BOOLEAN:= FALSE;
VARIABLE cnt: INTEGER:= 0;
BEGIN,

IF en EVENT AND en-l THEN started:= TRUE; cnt:= t; END IF;

IF started THEN
IF cnt=0 THEN

Y=X;

started:=FALSE;
END IF;
IF Clk'EVENT THEN cnt:= cnt -1; END IF;

END IF;

END PROCESS;

END func;

ENTITY add IS
GENERIC (t: INTEGER :=4);

PORT (Clk,en,xl,x2: IN INTEGER; y: OUT INTEGER);

END buff;
ARCHITECTURE func OF buff IS
BEGIN

PROCESS(Clk,en)

VARIABLE started: BOOLEAN:= FALSE;
VARIABLE cnt: INTEGER:= 0;

BEGIN

IF en'EVENT AND en=l THEN started:= TRUE; cnt:= t; END IF;

IF started THEN
IF cnt=0 THEN

y<=x 1 +x2;
started:=FALSE;

END IF;
IF Clk'EVENT THEN cnt:= cnt -1; END IF;

END IF;

END PROCESS;

END func;

ENTITY mul IS
GENERIC (t: INTEGER :=8);
PORT (Clk,en,x: IN INTEGER; y: OUT INTEGER);

END buff;
ARCHITECTURE func OF buff IS
BEGIN
CONSTANT w: INTEGER;

PROCESS(Clk,en)
VARIABLE started: BOOLEAN:= FALSE;
VARIABLE cnt: INTEGER:= 0;
BEGIN

IF en EVENT AND en=l THEN started:= TRUE; cnt:= t; END IF;

IF started THEN
IF cnt=0 THEN

y<-x * wiu,
started:=FALSE;

END IF;
IF CIk'EVENT THEN cnt:= cnt -1; END IF;

END IF;

END PROCESS;

END func;

ENTITY Fir szuro IS

PORT (x: IN Vektor(0 TO 8); y: OUT INTEGER);

END Fir szuro;

ARCHITECTURE vis OF Fir szuro IS

SIGNAL a,b,bl,b2 : Vektor(I TO 8);

SIGNAL c Vektor(1 TO 4);

SIGNAL d: Vektor(1 TO 2);

CONSTANT w: Vektor(1 TO 8);

BEGIN

PROCESS
VARIABLE j,k: INTEGER;

BEGIN
FOR i IN 1 TO 8 LOOP

a(i)<= x(i-1) + x(i) AFTER 4ns;

b 1 (i)<= a(i) AFTER 1 ns;
b(i)<= bl(i) * w(i) AFTER 8ns;
b2(i)<= b(i) AFTER Ins;
IF (i MOD 2)=0 THEN j=i/2; c(j)<= b2(i-1) + b2(i) AFTER 4ns;

ENDIF;

IF (i MOD 4)=0 THEN k=i/4; d(k)<= c(i/2-1)+ c(i/2) AFTER 4ns;
ENDIF;

END LOOP;

END PROCESS;

y<= d(l) + d(2) AFTER 4ns;

END vis;

ARCHITECTURE func OF Fir-szuro IS

COMPONENT buffer
PORT(c,e,x: IN INTEGER; y: OUT INTEGER);

END COMPONENT;

COMPONENT adder
PORT(c,e,xl,x2: IN INTEGER; y: OUT INTEGER)

END COMPONENT;

COMPONENT mult
PORT(c,e,x: IN INTEGER; y: OUT INTEGER);

END COMPONENT;

FOR add 1,add2,add3,add4,add5,add6,add7,add8,add9,add I O,add I 1,add 12..

addl3,addl4,addl5: adder USE ENTITY WORK.add(func);

FOR mull,mul2,mul3 ,mul4,mul5 ,muliE,mul7,mul8:

mult USE ENTITY WORK.mul(func); FOR

OTHERS buffer USE ENTITY WORK.buff(func);

SIGNAL a,b,b Ib2: Vektor(1 TO 8);

SIGNAL c Vektor(1 TO 4);

SIGNAL d Vektor(1 TO 2);
BEGIN

addi adder PORTMAP(Clk,v en(O),x(O),x(1),a(1));

add2: adder PORTMAP(Clk,v en(1),x(1),x(2),a(2));

add3 adder PORTMAP(Clk,v en(2),x(2),x(3),a(3));

add4: adder PORTMAP(Clk,v en(3),x(3),x(4),a(4));

add5: adder PORTMAP(Clk,v en(4),x(4),x(5),a(5));

add6: adder PORTMAP(Clk,v en(5),x(5),x(6),a(6));

add7: adder PORTMAP(Clk,v en(6),x(6),x(7),a(7));

add8: adder PORTIVAP(Clk,v en(7),x(7),x(8),a(8));

bufO buffer PORTMAP(Clk,v en(8),a(1),bl1(1));

bufi buffer PORTMAP(Clk,v en(9),a(2),bl(2));

buf2: buffer PORTMAP(Clk,v en(1O),a(3),bl(3));

buf3 :buffer PORTMAP(Clk,v en(1 1),a(4),bl1(4));

buf4: buffer PORTMAP(Clk,v en(12),a(5),bl(5));

buf5 :buffer PORTMAP(Clk,v en(1 3),a(6),b 1 (6));

buf6: buffer PORTMAP(Clk,v en(14),a(7),bI(7));

buf7: buffer PORTMAP(Clk,v en(15),a(8),bl(8));

mull1 mult PORTMA(Clk,v en(1 6),blI(l),b(l));

mul2: mult PORTMLAP(Clk,v en(17),bl(2),b(2));

mul3: mult PORTMA-P(Clk,v en(18),bl(3),b(3));

mul4: mult PORTMAP(Clk,v en(19),bI(4),b(4));

mul5: mult PORTMA(Clk,v en(?0),b 1 (5),b(5));
muI6: mult PORTMAP(Clk,v en(21),bl(6),b(6));

mul7: mult PORTMAP(Clk,v en(22),b 1 (7),b(7));

mul8: mult PORTMAP(Clk,v en(23),bl(8),b(8));

bufli buffer PORTMAP(Clk,v en(24),b(lI),b2(1));

bufi buffer PORTMA(Clk,v en(25),b(2),b2(2));

buf2: buffer PORTMAP(Clk,v en(26),b(3),b2(3));

buf3 :buffer PORTMAP(Clk,v en(27),b(4),b2(4));

buf4: buffer PORTMAP(Clk,v en(28),b(5),b2(5));

buf5: buffer PORTMAP(Clk,v en(29),b(6),b2(6));

buf6 :buffer PORTMA(Clk,v en(30),b(7),b2(7));

buf7: buffer PORTMAP(Clk,v en(3 1),b(8),b2(8));

add9: adder PORTMAP(Clk,v en(3 2),b2(lI),b2(2),c(1));

add.10: adder PORTMAP(Clk,v en(3 3),b2(3),b2(4),c(2));

addl I1: adder PORTMAP(Clk,v en(34),b2(5),b2(6),c(3));

add12: adder PORTM4AP(Clk,v en(3 5),b2(7),b2(8),c(4));

add.13 :adder PORTM4AP(Clk,v en(36),c(1),c(2),d(1));

add 14: adder PORTMAP(Clk,v en(3 7),c(3),c(4),d(2));

addl5: adder PORTMAP(Clk,v en(38),d(1),d(2),y);

END struct;

USE Glogbal.ALL;

Fast Fourier Transformation

Design a unit which can solve the algorithm of the Fast Fourier Transformation (FFT).
The unit should work with pipelined restarting period.

To solve the problems only the following elementary operations can be used:
Buffer, INC, DEC, +, -, *, DIV, MOD

The execution timeratios are (in the same order):
1 / 2 / 2 /4 / 4 / 8 /12 / 12 [clock cycle]

Tasks
The list of the students is located in the SEEGER server in the

\U\GUEST\LOGIC\NAGYHF SUBDIRECTORY. In order to solve the following problems the
first students in the list should use the WinSam, and the second ones should use the PIPE design
tool. The subdirectories, where the design tools can be found, have the same name as the design
tool has.

Solve the following problems
a) generate the Data-Flow Graph (DFG) from the problem
b) produce the behavioral description of the DFG in VHDL
c) produce the description of the DFG in the hardware description

language (HDL) of the given design tool (PIPE or WinSam)
d) Run the design tool with the input file that was generated in point c) with

different parameters such as:
* WinSam: (restart_s/restartj).14/16, 14/18, 14/20, 16/16,

16/20;
*.. PIPE: 14, 16, 18, 20, 22;

e) compare the results, analise the reasons of the output results and propose
a moution of the best design.

f) produce the structural description of the resulted structure and its controle in VHDL.
g) simulate the structural VHDL description was produced in point f)

The format of the ideal solution
a) The format of the report must be Win Word 2.0
b) The coverpage should contain:

S, title of the task
* name and group of the student

c) The format of the pictures must be PCX
d) The final file (report) should be copied into the directory:

/U/GUEST/LOGIC/BEAD
(Once a file was created it cannot be deleted, but a second copy with

different name might be accepted.)
e) The name of the file must be: secondname.DOC
f) The date of the handing in is the date when the file is created.

The deadline of the handing in is the last day of the semester!

1. The Data-Flow Graph

FIR rilter

INPUT

1 2 3 4 5 6 7 8

9 10 11 1 13 14 15 16

14 17 20 23 26, 2Y OUT

2. The VHDL Behavioral Description

entity add is
port (xl,x2: in real; y: out real);

end add;

architecture behv of add is
y<=xl+x2 after 4 ns;

end behv;

entity sub is
port (xl,x2: in real; y: out real);

end add;

architecture behv of add is
y<=xl-x2 after 4 ns;

end behv;

entity mul is
port (xl,x2: in real; y: out real);

end add;

architecture behv of add is
y<=xl*x2 after 8 ns;

end behv;

entity cons is
port (cl,c2,c3,c4,c5:out real);

end cons;

architecture behv of cons
cl<='-. 570796 after 0 ns;
c2<=1.0 after 0 ns;
c3<=0.5 after 0 ns;
c4<=4.16667e-2 after 0 ns;
c5<=-1.3889e-3 after 0 ns;

end behv;

entity sinus is
port (x: in real; y: out real);

end sinus;

[A

architecture struct of sinus is
component add port (xl,x2: in real; y: ofit real); end component;
component sub port (xl,x2: in real; y: out real); end component;
component mul port (xl,x2: in real; y: out real); end component;
component cons port (cl,c2,c3,c4,c5: out real); end component;
signal cl,c2,c3,c4,c5,sl,s2,s3,s4,s5,s6,s7,s8,s9: real;

begin
cons:cons port map(cl,c2,c3,c4,c5);
subl :sub port map(x,cl,sl);
mull :mul port map(sl,sl,s2);
mul2:mul port map(s2,c3,s3);
mul3 :mul port map(s2,s2,s4);
addl :add port map(s3,c2,s5);
mul4:mul port map(s4,c4,s6);
"mul5:mul port map(s2,s4,s7);
add2:add port map(s5,s6,s8);
mul6:mul port map(s7,c5,s9);
add3 :add port map(s8,s9,y);

end struct;

ib -A

I. The Input File of the WinSam

restart s:16
restart-f:17
net num:1
cover-num:1
sync -weight :4
max net:1
step :1
not same:1
addý-time:0
in,0, 0,0,0,1 :kivl
kivi, 4,1, 0,2,1: szorl
szorl, 8,1, 0,2,3 :szor4, szor2, szor3
szor4, 8,1,0, 2,1:kiv2
kiv2,4, 1,0,2,1 :osszl
szor2, 8,1, 0,2,2 :szor5, szor3
szor5, 8, 1,0,2,1: osszl
szor3, 8, 1,0,2,1: szor6
szor6, 8,1,0,2,1 :kiv3
osszl,4, 1,0,2, 1:kiv3
kiv3 ,4,1,0,2,1 :ki
ki,o,0o,o, 1,0o:

4. WinSam Results

Restart for scheduling is 16.
Restart for working is 17.

Additional time to latency is 17.

(Force Directed) Processor elements:9
(szor2,kiv3) (kivl) '(szorl.) (szor4) (kiv2) (szor5) (szor3)
(szor6) (osszl)

(Force Directed) Buffer elements:6
(Buf2) (Bufl) (BufO) (Buf4) (Buf3) (Buf5)

kivi n=1 A=O t=4 :szorl,
szorl n=1 A=4 t=8 :Buf 0, Bufl, Buf2,
Buf2 n=1 A=12 t=1 :szor3,
Bufi n=1 A=12 t=1 :szor2,
BufO n=1 A=12 t=1 :szor4,
szor4 n=1 A=13 t=8 :kiv2,
kiv2 n=1 A=21 t=~4 :osszl,
szor2 n=1 A=13 t=8 :Buf3, Buf4,
Buf4 n=1 A=21 t=1 :szor3,
Buf3 n=1 A=21 t=1 :szorS,
szor5 n=1 A=22 t=8 :osszl,
szor3 n=1 A=22 t=8 :BufS,
Buf 5 n=1 A=30 t=1 :szor6,
szor6 n=1. A=31 t=8 :kiv3,
osszl n=1 A=30 t=4 :kiv3,
kiv3 n=1 A=39 t=4 :kit

5. The Input File of the PIPE

graph: sinus
input: x
output:ki
processor add 4 2
processor sub 4 2
processor mul 8 2
si sub(x,x)
s2 mui(sl,sl)
s3 mul(s2,s2)
s4 mul(s2,s2)
s5 add(s3,s3)
s6 mul(s4,s4)
s7 mul(s2,s4)
s8 add(s5,s6)
s9 mul(s7,s7)
y add(s8,s9)
ki y

6 PIPE Results

R L Cost
4 46 301
6 44 203
8 47 159
10 45 97
12 45 87
14 43 75
16 43 73
18 40 67
20 40 65
22 40 59
24 40 57
26 40 56
28 40 40
30 40 40

S• i~i

7. The Scheduled Data-Flow Graph

-Y

I.+EL

IT

8. Structural VHDL Description:

ENTITY szinuszkepzo IS
PORT (x: IN REAL;clk: IN BIT; y: OUT REAL);
END szinuszkepzo;

ENTITY osszeg IS
PORT (a,b: IN REAL;ck: IN BIT;p: IN INTEGER; ki: OUT REAL);
END osszeg;

ARCHITECTURE viselk OF os'szeg IS
VARIABLE sa: INTEGER;
BEGIN

PROCESS (a,b,ck,p);
sa:=0;
FOR sa+4<p LOOP;

IF (ck'EVENT AND CK='1') THEN sa:=sa+l;
END LOOP ;
ki <= a+b;

END PROCESS;
END viselk;

ENTITY kulonb IS
PORT (a,b: IN REAL;ck: IN BIT;p: IN INTEGER; ki: OUT REAL);
END kulonb;

ARCHITECTURE viselk OF kulonb IS
VARIABLE sa: INTEGER;

BEGIN
PROCESS (a,b,ck,p);
sa:=0;
FOR sa+4<p LOOP;

IF (ck'EVENT AND CK='1') THEN sa:=sa+l;
END LOOP;
ki <= a-b;

END PROCESS;

END ýviselk;

ENTITY szorzo IS
PORT (a,b: IN REAL;ck: IN BIT;p: IN INTEGER; ki: OUT REAL);
END szorzo;

ARCHITECTURE viselk OF szorzo IS
VARIABLE sa: INTEGER;

BEGIN
PROCESS (a,b,ck,p);
sa:=0;
FOR sa+8<p LOOP;

IF (ck'EVENT AND CK='1') THEN sa:=sa+l;
END LOOP;
ki <= a*b;

END PROCESS;

END viselk;

ENTITY puffer IS
PORT (a:IN REAL;ck: IN BIT;p: IN INTEGER; ki: OUT REAL);
END puffer;

ARCHITECTURE viselk OF puffer IS
VARIABLE sa: INTEGER;

BEGIN
PROCESS (a,ck,p);
sa:=0;

FOR sa+l<p LOOP;
IF (ck'EVENT AND CK='1') THEN sa:=sa+l;
END LOOP;
ki <= a;

END PROCESS;

ARCHITECTURE szerk OF szinuszkepzo IS
CONSTANT pif: REAL:=1.57;
CONSTANT ek: REAL:=0.5;
CONSTANT egy: REAL:=1.0;
CONSTANT eh: REAL:=0.0417;
CONSTANT hh: REAL:=0.00139;
CONSTANT sl: INTEGER:=0;
CONSTANT s2: INTEGER:=4;
CONSTANT s3: INTEGER:=13;
CONSTANT s4: INTEGER:=21;
CONSTANT s5: INTEGER:=30;
CONSTANT s6: INTEGER:=13;
CONSTANT s7: INTEGER:=22;
CONSTANT s8: INTEGER:=22;
CONSTANT s9: INTEGER:=31;
CONSTANT slO: INTEGER:=39;"
CONSTANT spO: INTEGER:=12;
CONSTANT spl: INTEGER:=12;
CONSTANT sp2: INTEGER:=12;
CONSTANT sp3: INTEGER:=21;
CONSTANT sp4: INTEGER:=21;
CONSTANT sp5: INTEGER:=30;
SIGNAL kl,szl,sz2,sz3,sz4,sz5,sz6,k2,k3,os: REAL;
COMPONENT osszeg PORT (a,b: IN REAL;ck: IN BIT;p: IN INTEGER; ki:OUT RE
END COMPONENT;
COMPONENT kulonb PORT (a,b: IN REAL;ck: IN BIT;p: IN INTEGER; ki:OUT RE
END COMPONENT;
COMPONENT szorzo PORT (a,b: IN REAL;ck: IN BIT;p: IN INTEGER; ki:OUT RE
END COMPONENT;

BEGIN
el: kulonb PORT MAP (pif,x,clk,sl,kl);
e2: szorzo PORT MAP (kl,klclk,s2,szl);
p0: puffer PORT MAP (szl,clk,spo,puo);
e3: szorzo PORT MAP (ek,pO,clk,s3,sz4);

e5: osszeg PORT MAP (k2,sz5,clk,s5,os);
pi: puffer PORT MAP (szl,clk,spl,pul);
e6: szorzo PORT MAP (pul,pul,clk,s6,sz2);
p3: puffer PORT MAP (sz2,clk,sp3,pu3);
e7: szorzo PORT MAP (pu3,eh,clk,.s7,sz5);
p2: puffer PORT MAP (szl,clk,sp2,pu2);
p4: puffer PORT MAP (sz2,clk,sp4,pu4);
e8: szorzo PORT MA.P (pu4,pu2,clk,s8,sz3);
p5: puffer PORT MA-P (sz3,clk,sp5,pu5);
e9: szorzo PORT MAP (pu5,hh,clk,s9,sz6);
e1O: kulonb PORT MAP (os,sz6,clk,slo,y);
END szerk;

Expansion of 3*3 Determinant

Design a unit which can solve the expansion of a 3*3 determinant. The unit should work
with pipelined restarting period.

To solve the problems only the following elementary operations can be used:
Buffer, INC, DEC, +, -, *, DIV• MOD

The execution timeratios are (in the same order):
1/ 2 / 2 /4 / 4 / 8 /12 / 12 [clock cycle]

Tasks
The list of the students is located in the SEEGER server in the

\U\GUESTLOGIC\NAGYHF SUBDIRECTORY. In order to solve the following problems the
first students in the list should use the WinSam, and the second ones should use the PIPE design
tool. The subdirectories, where the design tools can be found, have the same name as the design
tool has.

Solve the following problems
a) generate the Data-Flow Graph (DFG) from the problem
b) produce the behavioral description of the DFG in VHDL
c) produce the description of the DFG in the hardware description

language (HDL) of the given design tool (PIPE or WinSam)
d) Run the design tool with the input file that was generated in point c) with

different parameters such as:
* WinSam: (restart_s/restartj) 14/16, 14/18, 14/20, 16/16,

16/20;
* PIPE: 14,16,18,20,22;

e) compare the results, analise the reasons of the output results and propose
a moution of the best design.

f) produce the structural description of the resulted structure and its controle in VHDL.
g) simulate the structural VHDL description was produced in point f)

The format of the ideal solution
a) The format of the report must be Win Word 2.0
b) The coverpage should contain:

S* title of the task
S• name and group of the student

c) The format of the pictures must be PCX
d) The final file (report) should be copied into the directory:

/U/GUEST/LOGIC/BEAD
(Once a file was created it cannot be deleted, but a second copy with

different name might be accepted.)
e) The name of the file must be: secondname.DOC
f) The date of the handing in is the date when the file is created.

The deadline of the handing in is the last day of the semester!

1. The Data-Flow Graph

b2 c3b3 c2 b3 ic1 bl c3b- c2b2 cl

mull mu! mu! mu! mul rnul

sub sub sub
al a283

mu!

2. The VHDL Behavioral Description

ENTITY det IS
PORT (al, a2, a3, bl, b2, b3, cl, c2, c3: IN INTEGER; y: OUT INTEGER);

END det;

ARCHITECTURE func OF det IS;
SIGNAL Si, S2, S3, S4, S5, S6, S7, S8, S9, Sl0, Sil, S12, S13 INTEGER;

BEGIN
SI <= b2 * c3 AFTER 8 ns;
S2 <= b3 * c2AFTER 8 ns;
S3 <= b3 * cl AFTER 8 ns;
S4 <= b * c3 AFTER 8 ns;
S5 <= bl * c2 AFTER 8 ns;
S6 <= b2 * cI AFTER 8 ns;

S7 <= S 1 - S2 AFTER 4 ns;
S8 <= S3 - S4 AFTER 4 ns;
S9 <= S5 - S6 AFTER 4 ns;

SlO <= al * S7 AFTER 8 ns;
Sl 1<= a2 *S8 AFTER 8 ns;
S12 <= a3 * $9AFTER 8 ns;

S10 <= SIO + S11 AFTER 4ns;
y <= S13 + S12 AFTER 4ns;

END func;

A'

3. The Input File of the WinSam

restart s : 8
restart f: 10
net_ num: 1
cover-num:1
sync-weight: 4
max-net: 1
step:1
not same:
add-time :0
in ,0,0,0,0,9 :mull1,mul2,mul3 ,mul4,mul5,mul6,mul7,muI8,muI9
mul1, 8,1,0,2,1: :sublI
mul2,8,1,0,2,1: :sublI
mul3,8,1,0,2,1 :sub2
mul4,8, 1,0,2, 1: sub2
mul5,8,1,0,2,1 :sub3
mul6,8, 1,0,2,1 :sub3
sub 1,4,1,0,2,1 :mul7
sub2,4, 1,0,2,1 :mul8
sub3,4,1 ,0,2,1 :mul9
mul7,8,1,0,2,1 :addl
mul 8,8, 1,0,2, 1: addl
mul9,8,1,0,2,1 :add2
addl1,4,1,0,2,1: :add2
add2,4,1,0,2,1 :out
out,0,,0,0,1,0

4. WinSam Results

restarts restartf buffers proc.
8 10 22 14
8 16 22 14
8 20 17 10

10 24 6 4
"10 12 15 12
12 14 15 14
14 16 4 14
14 20 3 14
16 20 3 14
16 18 3 14
10 16 15 12
6 10 22 14
6 14 20 12
6 12 22 12

12 20 11 12

• ::iA

5. The Input File of the PIPE

graph: det2
input: a, b, c, d, f, g, h, i
output: out
processor aos delay:4 input:2
processor mul delay:8 input:2
ul mul (a, e)
u2 mul (b, f)
u3 mul (c, d)
u4 mul (c, e)
u5 mul (a, f)
u6 mul (b, d)
u7 mul (ul, i)
u8 mul (u2, g)
u9 mul (u3, h)
ulO mul (u4, g)
ul 1 mul (u5, h)
u 12 mul (u6, i)
u13 mul (u7, u8)
u14 mul (ulO, ul 1)
u15 mul (u13, u9)
u16 mul (u14, u12)
u17 mul (ul5, u16)
out u17.

: . i. • ?.

6 PIPE Results

cost- t(i) * nu of e(i)

R cost
4 331
5 259
6 227
7 239
8 263
9 285
10 150
11 146
12 146
13 132
14 132
15 132
16 132
"17 132

7. The Scheduled Data-Flow Graph

R=12 subl, add2 can be allocated (WINSAM)

b2 c3 b3. cl h3 cl bI c3 bl

mul mul mu mu mu mu
0 L d3

all

zub a2 sub sub
"4 to b4I

|out

8. Structural VHDL Description:

ENTITY det IS
PORT (al,a2,a3,abl,b2,b3, Cl, G2,G3: fN INTEGER; y: OUT IHTEGER);
END dett;
ARCHITECTURE func OF det IS
SIGHAL S 1,52,53,$4,55,S6,57,58,59,5 10 511,S 12: INTEGER;
SIGHAL 513,514,515,516,51?,'518,519,520,521,522: INTEGER;
s I G N As.s23,s24,s25,s26, s27, s28 : INTEGER;
BEGIN
SI<= b2* c3 AFTER 8ns;
S3<= b3* c2 AFTER 8ns;
S5<= b3* cl AFTER 8ns;
S7<= bI* c3 AF'TER 8ns;
S9<= bl * c2 AFTER 8ns'
S I11<= b2* cl AFTER 8 ns;

S2<= SI AFTER Ins;
S4<= S3AFTER Ins;
S6<= S5AFTER Ins;
S8<= S7 AFTER Ins;
SIO<= S9AFTER Ins;
S12<= SI IAFTER Ins;

S13<= S2- S4 AFTER 4ns;
S15<= S6- S8 AFTER 4ns;
Si7<= S10- SI2AFTER 4ns;

S14<= SI3AFTER Ins;
S16<= SISAFTER Ins;
S18<= S17 AFTER Ins;

S19<= aIAFTER I ns;
S20<= a2 AETER 1 ns;
S21<= a3 AFTER 1 ns;

S22<= S19 * S14 AFTER 8 ns;
S24<= S20 * S16 AETER 8 ns;
S26<= S21 * S18 AFTER 8 ns;

S23 <= S22 AFTER 1 ns;
S25 <= S24 AFTER 1 ns;
S27 <= S26 AFTER 1 ns;

S28 <= S23 + S25 AFTER 4 ns;
y <= S28 + S27 AFTER 4 ns;
END func;

PACKAGE Global IS
SIGNAL clk: INTEGER:= 0;

SIGHAL BUFOen : INTEGER := 0;
SIGHAL BUFIen : INTEGER := 0;
SIGHAL BUF2_en: INTEGER := 0;
SIGHAL BUF3_en : INTEGER := 0;
SIGHAL BUF4_en : INTEGER := 0;

SIGHAL BUF5-en: INTEGER:= 0;
SIGHAL BUF6_en : INTEGER := 0;
SIGHAL BUF7_en: INTEGER := 0;
SIGHAL BUF8_en : INTEGER :0;
SIGHAL BUF9_en: INTEGER:= 0;
SIGHAL BUFlO en : INTEGER:= 0;
SIGHAL BUFI 1_en : INTEGER := 0;
SIGHAL BUF12_en : INTEGER:= 0;
SIGHAL BUF I3_en : INTEGER := 0;
SIGHAL BUF14_en : INTEGER:= 0;

SIGNAL MULl-en : INTEGER :=0;
SIGNAL MfUL2_en : INTEGER :=0;
SIGNAL MUTL3_en: INTEGER :=0;
SIGNAL MUL4_en : INTEGER :~=;
SIGNAL MIJL5_en: INTEGER :=O;
SIGNAL MUL6_en : INTEGER :=0;

SIGNAL SUB I-en : INTEGER :=0;
SIGNAL SUB2_en: INTEGER :=0;
SIGNAL SU133_en: INTEGER :=0;

SIGNAL MUL7_en: INTEGER :=0;
SIGNAL MUL8_en: INTEGER :=0;
SIGNAL MUL9_en: INTEGER :=0;

SIGNAL ADDI en: INTEGER :=O;
SIGNAL ADD2_en: INTEGER :=0;

CONSTANT period :INTEGER := 12;

SIGHAL BUFO offs: INTEGER :=8;
SIGHAL BUFI-offs: INTEGER := 8;
SIGHAL BIJF2_affs: INTEGER := 8;
SIGHAL BUF3_offs : INTEGER:= 8;
SIGHAL BIJF4_offs: INTEGER:= 8;
SIGHAL BUF5_offs : INTEGER:= 8;
SIGHAL BIJF6_offs : INTEGER := 13;
SIGHAL BUF7_offs: INTEGER:= 13;
SIGHAL BUF8_offs : INTEGER := 13;
SIGHAL BUF9_offs : INTEGER:= 22;
SIGHAL BUFIO offs: INTEGER :=22;
SIGH4AL BJF1 1_Ioffs : INTEGER := 22;
SIGHAL BUF12_offs: INTEGER :1 1;
SIGHAL BUF13_offs : INTEGER= :1I;
SIG1HAL BUF 14_offs: INTEGER :=I 11;

SIGNAL MULl-offs : INTEGER :=0;
SIGNAL MUL2_-offs : INTEGER :=0;
SIGNAL MUL3_offs : INTEGER :=0;
SIGNAL MUL4_offs : INTEGER :=0;
SIGNAL MIJL5_offs : INTEGER :=0;
SIGNAL MUL6_offs: INTEGER :=0;

SIGNAL SUB I offs : INTEGER: 4-9;
SIGNAL SUB2_offs : INTEGER :9;
SIGNAL SUB3_offs: INTEGER :9;

SIGNAL MUL7_offs: INTEGER :=14;
SIGNAL MUL8_offs: INTEGER :=14;
SIGNAL MUL9_offs: INTEGER :=14;

SIGNAL ADD Ioffs: INTEGER :=23;
SIGNAL ADD2_offs : INTEGER :=27;

FUNCTION start (offset, act: INTEGER) RETURN BOOLEAN;
END Global;

PACKAGE BODY Global IS
FUNCTION start (offset, act: INTEGER) RETURN BOOLEAN IS
BEGIN

IF act< offset THEN RETURN FALSE;
"ELSEIF (act-offset) MOD period =0 THEN RETURN TRUE;
ELSE RETURN FALSE

END IF;
"END start;

END Global;

USE Global.ALL;

ENTITY scheduler IS
END;

ARCHITECTURE sched OF scheduler IS
BEGIN

PROCESS
VARIABLE act: INTEGER: =0;
BEGIN
IF start(BUFO-ofs,act) THEN BUFOen <=A; ELSE BUFOen <= 0; END IF;
IF start(BUFlofsact) THEN BUFOen <=1; ELSE BUFlen <= 0; END IF;
IF start(BUF2_ofsact) THEN BUFOen <=1; ELSE BUF2_en <= 0; END IF;
IF start(BUF3_ofs,act) THEN BUFO en <=1; ELSE BUF3_en <= 0; END IF;
IF start(BUF4_ofsact) THEN BUFOen <=1; ELSE BUF4_en <= 0; END IF;
IF start(BUF5_ofsact) THEN BUFO-en <=1; ELSE BUF5_en <= 0; END IF;
IF start(BUF6 ofs,act) THEN BUFOen <=1; ELSE BUF6_en <= 0; END IF;
"IF start(BUF7_ofs,act) THEN BUFOen <=1; ELSE BUF7_en <= 0; END IF;
IF start(BUF8_ofsact) THEN BUFOen <=1; ELSE BUF8_en <= 0; END IF;
IF start(BUF9_ofsact) THEN BUFO en <=1; ELSE BUF9 en <= 0; END IF;
IF start(BUF10_ofsact) THEN BUFO en <=I; ELSE BUF10_en <= 0; END IF;
IF start(BUF1 I-ofs,act) THEN BUFO en <=1; ELSE BUF1 1_en <= 0; END IF;
IF start(BUF12_ofs,act) THEN BUFO en <=1; ELSE BUF12_en <= 0; END IF;
IF start(BUF13_ofsact) THEN BUFO en <=1; ELSE BUF13_en <= 0; END IF;

IF start (MULl ofs, act) THEN MULIen <= 1: ELSE MULI_en <=0 ; END IF;
IF start (MUL2 ofs, act) THEN MULl en <= 1: ELSE MUL2_en <= 0 ; END IF;
IF start (MUL3_ofs, act) THEN MULl en <= 1: ELSE MUL3_en <=0 ; END IF;
IF start (MUL4_ofs, act) THEN MULlen <= 1: ELSE MUL4_en <= 0; END IF;
IF start (MUL5 ofs, act) THEN MULI en <= 1: ELSE MUL5_en <= 0 ; END IF;
IF start (MUL6_ofs, act) THEN MULl en <= 1: ELSE MUL6_en <= 0 ; END IF;

IF start(SUBIofsact) THEN SUB Ien <.z 1; ELSE SUBI_en <= 0; END IF;
IF start(SUB2_ofsact) THEN SUB2_en <= 1; ELSE SUB2_en C= 0; END IF;
IF start (SUB3_ofs,act) THEN SUB3_en <= 1; ELSE SUB3_en <= 0; END IF;

IF start (ADDIofs, act) THEN ADDIen <= 1; ELSE ADDIen <= 0; END IF;
IF start(ADD2_ofsact) THEN ADD2_en <= 1; ELSE ADD2_en <= 0; END IF;

act :=act + 1;
clk <= act;
IF act = 100 THEN WAIT;
END PROCESS;

END sched;

ENTITY BUFF I S
PORT (clk,en : IN INTEGER; a: IN INTEGER; z: OUT INTEGER);

END BUFF;

ARCHITECTURE func OF BUFF IS
BEGIN

PROCESS (clk, en);
VARIABLE started: BOOLEAN := FALSE;
VARIABLE cnt: INTEGER: 0;
BEGIN
IF en'EVENT AND en = I THEN

started := TRUE;
cnt :=1;
END IF;
IF started THEN

IF cnt = 0 THEN
z <= a;
started := FALSE;
END IF;
IF clk'EVENT THEN

cnt := cnt - 1;
END IF;

END IF;
END PROCESS;

END func;

ENTITY ADD I S
PORT (clk,en : IN INTEGER; a,b : IN INTEGER; z: OUT INTEGER);

END ADD;

ARCHITECTURE func OF ADD IS
BEGIN

PROCESS (clk, en);
VARIABLE started: BOOLEAN := FALSE;
VARIABLE cnt : INTEGER : 0;
BEGIN
IF en'EVENT AND en = 1 THEN

started := TRUE;
cnt :=4;
END IF;
IF started THEN

IF cnt = 0 THEN
z <= a + b;
started := FALSE;
END IF;
IF clk'EVENT THEN A

cnt := cnt - 1;
END IF;

END IF;

END PROCESS;
END func;

ENTITY SUB IS
PORT (clk,en : IN INTEGER; a,b: IN INTEGER: z: OUT INTEGER);

END SUB;

ARCHITECTURE func OF SUB IS
BEGIN

PROCESS (clk, en);
VARIABLE started: BOOLEAN := FALSE;
VARIABLE cnt: INTEGER: 0;
"BEGIN
IF en'EVENT AND en = I THEN

started := TRUE;
cnt :=4;
END IF;
IF started THEN

IF cnt = 0 THEN
z <= a -b;

started := FALSE;
END IF;
IF clk'EVENT THEN

cnt := cnt - 1;
END IF;

END IF;
END PROCESS;

END func;

ENTITY MUL IS
PORT (clk,en : IN INTEGER; a,b: IN INTEGER; z: OUT INTEGER);

END MUL;

ARCHITECTURE func OF MUL IS
BEGIN

PROCESS (clk, en);
VARIABLE started : BOOLEAN := FALSE;
VARIABLE cnt • INTEGER: 0;
BEGIN
IF en'EVENT AND en = 1 THEN

started := TRUE;
cnt :=8;
END IF;
IF started THEN

IF cnt =0 THEN
z <=a b;
started := FALSE;
END IF;
IF clk'EVENT THEN

cnt := cnt - 1;
END IF;

END IF;
END PROCESS;

END func;

ARCHITECTURE struct OF det Is
COMPONENT BUF PORT (c, e, a: IN INTEGER; z: OUT INTEGER);

END COMPONENT;
COMPONENT ADD. PORT (c,e,a,b : IN INTEGER; z: OUT INTEGER);

END COMPONENT;
COMPONENT SUB PORT (c, e, a, b : IN INTEGER; z: OUT INTEGER);

END COMPONENT;
COMPONENT MUL PORT (c,e, a, b: IN INTEGER; z: OUT INTEGER);

END COMPONENT;

FOR MULl I MUL USE ENTITY Work.MUL (func);
FOR MUL2 : MUL USE ENTITY Work.MUL (func);
FOR MUL3 : MUL USE ENTITY Work.MUL (func);
FOR MUL4 : MUL USE ENTITY Work.MUL (func);
FOR MUL5 : MUL USE ENTITY Work.MUL (func);
FOR MUL6 : MUL USE ENTITY Work.MUL (func);

FOR SUBI : SUB USE ENTITY Work.SUB(func);
FOR SUB2 : SUB USE ENTITY Work.SUB(func);
FOR SUB3 : SUB USE ENTITY Work.SUB(func);

FOR MUL7 : MUL USE ENTITY Work.MUL(func);
FOR MUL8 : MUL USE ENTITY Work.MUL(func);
FOR MUL9 : MUL USE ENTITY Work.MUL (func);

FOR ADDI : ADD USE ENTITY Work. ADD(func);
FOR ADD2 : ADD USE ENTITY Work. ADD(func);

FOR OTHERS : BUF USE ENTITY Work.BUF(func);

SIGNAL SI,S2,S3,S4,S5,S6,S7,S8,S9,S I 0,SII1,S 12: INTEGER;
SIGHAL S13, S14, S15, S16, S17, S18, S19, S20, S21, S22 :INTEGER;
SIGNAL S23, S24, S25, S26, S27, S28 : INTEGER;

BEGIN
BUF0 BUF PORT MAP (clk,BUFO-en,SI,S2);
BUFI : BUF PORT MAP (clk,BUFO -en,S3,S4);
BUF2 : BUF PORT MAP (clk,BUFO en,S5,S6);
BUF3 : BUF PORT MAP (clk,BUFO-en,S7,S8);
BUF4 : BUF PORT MAP (clk,BUFO-en,S9,S 10);
BUF5 : BUF PORT MAP (clk,BUFO -en,SIl,S 12);
BUF6 : BUF PORT MAP (clk,BUFO -en,513,S 14);
BUF7 : BUF PORT MAP (clk,BUFO_enS15,S 16);
BUF8 : BUF PORT MAP (clk,BUFO-en,S17,S 18);
BUF9 : BUF PORT MAP (clk,BUFO -en,S22,S23);
BUFlO BUF PORT MAP (clk,BUFO -en,S24,525);
BUF1 1 BUF PORT MAP (clk,BUFO-en,S26,S27);
BUF12 : BUF PORT MAP (clk,BUFO -en,aI,S 19);
BUF13 : BUF PORT MAP (clk,BUF0_en,a2,S20);
BUF14 : BUF PORT MAP (clk,BUFO-en,a3,S2 1);

MULl MUL PORT MAP (clk,MUL1I_-en,b2,c3',S 1);
MUL2 : MUL PORT MAP (clk,MUL2_en,b3,c2,S3);
MUL3 : MUL PORT MAP (clk,MUL3_-en,b3,cI,S5);
MUL4 : MUL PORT MAP(clk,MUL4_en,bI,c3,57);
MUL5 : MUL PORT MAP (clk,MUL5_en bi c2,S9);

MUL6 MUL PORT MAP (clk,MUL6_en b2,ci SI 1);

SUB I SUB PORT MAP (clk-,SUBI -en,S2,S4,S 13);
-SUB2 SUB PORT MAP (clk,SUB2_-en,S6,S8,S 15);
SUB3 SUB PORT MAP (Clk,SUB3_en,SIO,S12,S17);

MUL7 MUL PORT MAP(clk,MUL7_enS19,S14,S22);
MUL8 MUL PORT MAP (clk,MUL8_-enS20, S16,S24);
MUL9 MIJL PORT MAP (clk,MUL9_enS21,S18,S26);

ADDI ADD PORT MAP(Clk, ADDI -en, S23,S25,S28);
ADD2 ADD PORT MAP (cik, ADD2_en, S2 8, S2 7, y);
END struct;

Differential Equation Solver

Design a unit which can count the solution of a y"+3xy'+3y--O kind differential equation
in the following way:

xl=x+dx yl=y+dy ul=u-3xudx-3ydx
The unit should work with pipelined restarting period.

To solve the problems only the following elementary operations can be used:
Buffer, INC, DEC, +, -, *, DIV, MOD

The execution timeratios are (in the same order):
1 / 2 2 4 4 8 12 12 [clock cycle]

Tasks
The list of the students is located in the SEEGER server in the

\U\GUESTLOGIC\NAGYHF SUBDIRECTORY. In order to solve the following problems the
first students in the list should use the WinSam, and the second ones should use the PIPE design
tool. The subdirectories, where the design tools can be found, have the same name as the design
tool has.

Solve the following problems
a) generate the Data-Flow Graph (DFG) from the problem
b) produce the behavioral description of the DFG in VHDL
c) produce the description of the DFG in the hardware description

language (HDL) of the given design tool (PIPE or WinSam)
d) Run the design tool with the input file that was generated in point c) with

different parameters such as:
* WinSam: (restarts/restartj) 14/16. 14/18, 14/20, 16/16,

16/20;
* PIPE: 14, 16, 18, 20, 22;

e) compare the results, analise the reasons of the output results and propose
a moution of the best design.

f) produce the structural description of the resulted structure and its controle in VHDL.
_g) simulate the structural VHDL description was produced in point f)

The format of the ideal solution
a) The format of the report must be Win Word 2.0
b) The coverpage should contain:

* title of the task
* name and group of the student

c) The format of the pictures must be PCX
d) The final file (report) should be copied into the directory:

/U/GUEST/LOGIC/BEAD
(Once a file was created it cannot be deleted, but a second copy with

different name might be accepted.)
e) The name of the file must be: second name.DOC
f) The date of the handing in is the date when the file is created.

The deadline of the handing in is the last day of the semester!
i

1, The Data-Flow Graph

* V

@-- -a

.......-.
..- --

'I•

2. The VHDL Behavioral Description

ENTITY diff IS
PORT (x,y,u,dx: IN integer ; xl,yl,ul: OUT integer);

END diff;
ARCHITECTURE vis OF diff IS
SIGNAL ml,m2,m3,m4,m5,s: integer;
BEGIN

m2<=dx*u AFTER 8ns;
ml<=x*m2 AFTER 8ns;
m3<=y*dx AFTER 8ns;
xl<=x+dx AFTER 4ns;
yl <--m2+yI AFTER 4ns;
m4<-m1*(-3) AFTER 8ns;
m5<=m3*(-3) AFTER 8ns;
s<=m4+m5 AFTER 4ns;
ul<=s+u AFTER 4ns;

END vis;

3. The Input File of the WinSam"

restart: 10
latency:30
net num: 1
cover-num: 1
sync-weight: 4
max net: 1
step: 1
not same: 1
add-time: 0
in, 0, 0, 0, 0, 6: mull, mul2, mul3, sumI, sum2, sum4
mull, 8, 8, 0, 2, 1: mul4
mul2, 8, 8, 0, 2, 2: sum2, mull
sumI, 4, 4, 0, 2, 1: out
sum2, 4, 4, 0, 2, 1: out
mul3, 8, 8, 0, 2, 1: mul5
mul4, 8, 8, 0, 2, 1: sum3
mul5, 8, 8, 0, 2,1: sum3
sum3, 4, 4, 0, 2, 1:sum4
sum4, 4, 4, 0, 2, 1: out
out, 0, 0, 0, 3, 0:

:?::ii :':

4. WinSam Results

restartesul restartf processor sz. pufferszam

10 10 9 11
10 20 6 7
10 30 6 6
10 40 5 4
10 50 5 4
15 40 2 7

i~ii!'I

5. The Input File of the PIPE

#diff egyenlet
graph:diff
input:u,y,x,dx
output: u~l,yl,xl
processor mul 8 2
processor sum 4 2
m2 mul (u,dx)
ml mul (x,m2)
m3 mul (y,dx)
m4 mul (ml,ml)
m5 mul (m3,m3)
s sum (m4,m5)
temp 1 sum (Li,s)
temp2 sum (m2,y)
temp3 sum (x,dx)
ul tempi
yl temp2
xl temp3

6 PIPE Results

R processors + buffers Cost

5 18 135 247

6 14 129 225

9 13 92 184

10 9 51 107

12 8 43 95

13 7 41 89

15 8 35 87

20 8 14 66

25 7 8 56

"30 6 3 47

35 6 0 40

?I

7. The Scheduled Data-Flow Graph

uir

.• Y z S

'• •~ ~',I

8. Structural VHDL Description: -

ENTITY diff IS
PORT (x,y,u,dx: IN integer ; xl,yl,ul : OUT Integer);

END diff;

ARCHITECTURE funkc OF diff IS
SIGNAL ml ,m2,m3,m4,m5,s,p 1,p2,p3 ,shl ,sh2,sh3 Integer;

PACKAGE Global IS
SIGNAL CLK: Integer:=0;
SIGNAL buflen :Integer:=0;
SIGNAL buf2_en :Integer:=O;
SIGNAL buf3_en :Integer:=0;
SIGNAL shlen :Integer:=O;
SIGNAL sh2_en :Integer:--O;
SIGNAL sh3_en :Integer:=O;
SIGNAL mull_en :Integer:--O;
SIGNAL mul2_en :Integer:=0;
SIGNAL mul3_en :Integer:=O;
SIGNAL mul4_en :Integer:=0;
SIGNAL mul5_en :Integer:=O;
SIGNAL sumlen :Integer:=0;
SIGNAL sum2_en :Integer:=0;
SIGNAL sum3_en :Integer:=O;
SIGNAL sum4_en :Integer:=0;

CONSTANT q :Integer:= -3;
CONSTANT period -Integer :=13;
CONSTANT bufloffs: Integer :=8;
CONSTANT buf2_offs Integer :=17;
CONSTANT buf3_offs Integer :=8;
CONSTANT shloffs Integer :=O;
CONSTANT sh2_offs Integer :=O;
CONSTANT sh3_offs Integer :=17;
CONSTANT mull_offs "Integer :=9;
CONSTANT mul2_offs : Integer :=O;
CONSTANT mul3_offs : Integer :=O;
CONSTANT mul4_offs : Integer :=18;
CONSTANT mul5_offs "Integer :=9;
CONSTANT sumloffs• Integer :=O;
CONSTANT sum2_offs "Integer :=8;
CONSTANT sum3 offs : Integer :=26;
CONSTANT sum4_offs : Integer :=30;

FUNCTION start(offset, act: Integer) RETURN Boolean;
END Global;

PAKAGE BODY Global IS
FUNCTION start(offset, act: Integer) RETUJRN Boolean IS
BEGIN
IF act< offset THEN RETURN FALSE;
ELSIF (act-offset) MOD period =0 THEN RETURN TRUE;
ELSE RETURN FALSE;
END IF;

END start;
END Global;

USE Global.ALL;

ENTITY scheduler IS
END;

ARCHITECTURE sched OF scheduler IS
BEGIN
sched~proc:

PROCESS
VARIABLE act: Integer :=0;
BEGIN

IF start(bufl ofs,act) THEN bufi-en<=1 ELSE bufi-en<=0; END IF;
IF start(buf2__ofs,act) THEN buf2_en<=1 ;ELSE buf2_en<=0; END IF;
IF start(buf3 ofs,act) THEN buf3_en<=1 ;ELSE buf3_en<=0; END IF;
IF start(shl ofs,act) THEN shi-en<=1 ;ELSE shi-en<=0; END IF;
IF start(sh2 ofs,act) THEN sh2_en<=l ;ELSE sh2_en<=0; END IF;
IF start(sh3 -ofs,act) THEN sh3_en<=l ;ELSE sh3_en<=0; END IF;
IF. start(mul I ofs,act) THEN mullI en<=l ELSE mull en<=0; END IF;
IF start(mul2 ofs,act) THEN mul2_en<1 ;ELSE mul2_en<=0; END IF;
IF start(mul3 -ofs,act) THEN mul3_en<=1 ELSE rnul3_-en<=0; END IF;
IF start(mul4 ofs,act) THEN mul4_en<=l ELSE mul4_en<0O END IF;
IF start(mul5 ofs,act) THEN mul5_en<=1 ELSE mul5_en<=0; END IF;
IF start(suml ofs,act) TI-EN sumi-en<=1;ELSE sumi-en<Z0; END IF;
IF start(sum2 ofs,act) THEN sum2_-en<=1 ELSE sum2_-en<=O; END IF;
IF start(sum3 ofs,act) THEN sum3_en<=l ELSE sum3_en<=O; END IF;
IF start(sum4 ofs,act) THEN sum4_en<=1 ELSE sum4 enKO0; END IF;
act :=act+1;
CLK <= act;
IF act=200 THEN WAIT:

END PROCESS;
END sched;

ENTITY buffiS
GENERIC (t : Integer :=l1);

ENTITY buff IS
GENERIC (t: Integer :=1);
PORT (clk, en: IN INTEGER; z: OUT INTEGER);

END buff;

ARCHITECTURE func OF buff IS
BEGIN

PROCESS (clk,en)
VARIABLE started: Boolean :=FALSE;
VARIABLE cnt: Integer :=O;

BEGIN
IF en'EVENT AND en=1 THEN-_enable

started :=TRUE;
cnt :-t;

END IF;
IF started THEN
IF cnt=O THEN

z<=a;

started:=FALSE;
END IF;

END IF;
END PROCESS;

END func;

ENTITY mul IS
GENERIC (t:Integer :=12);
PORT (clk, en: IN Integer; z: OUT Integer);

END buff;

ARCHITECTURE func OF mul IS
BEGIN

PROCESS (clk, en)
VARIABLE started: Boolean :=FALSE;
VARIABLE cnt" Integer :=O;

BEGIN
IF enEVENT AND en=l THEN

started :=TRUE;
cnt :--t;

END IF;
IF started THEN

IF cnt :=O THEN
z<=a*b;
started:=FALSE;

END IF;
IF clk'EVENT THEN

cnt :=cnt-1;
END IF;

END IF;
END PROCESS;

END func;

ENTITY add IS
GENERIC(t:Integer:=4);
PORT (clk, en: IN Integer; a : IN Integer; z: OUT Integer);

End buff;

ARCHITECTURE func OF add IS
BEGIN

PROCESS (clk, en)
VARIABLE started : Boolean :=FALSE;
VARIABLE cnt : Integer:=O;

BEGIN
IF en'EVENT AND en=l THEN

started := TRUE;
cnt :=t;

END IF;
IF started THEN
IF cnt :=0 THEN

z<=a+a;
started:=FALSE;

END IF;
IF clk'EVENT THEN

cnt := cnt-1;
END IF;

END IF;
END PROCESS;

END func;

ARCHITECTURE struct OF sample IS
COMPONENT buf PORT (c, e, a: IN Integer, z: OUT Integer); END

COMPONENT;
COMPONENT mul PORT (c, e, a: IN Integer, z: OUT Integer); END
COMPONENT;

COMPONENT add PORT (c, e, a: IN Integer, z: OUT Integer); END
COMPONENT;

FOR mull2 : mul USE ENTITY Work mul(func);

FOR add4: add USE ENTITY Work add(func);
FOR OTHERS: buf USE ENTITY Work buf~func);

SIGNAL J01 ,J02,J03 ,JO4,J05,J06,J07,JO8,J09,J 1 ,J 11,J 12,Jl 13,Jl14,J 15,
J 1 6,J1 7,J1 8,J 19,J20,J2 1,J22,J23 ,J24

MO 1 ,M02,M03 ,M04,M05 ,M06,M07,M08 :Integer;

CONSTANT S9,S1O0,SlI1,S 12,
Wi ,W2,W3,W4,W5,W6,W7,W8: Integer;

BEGIN

addOl :add4 PORT MAP (CLK,addOl-en, si s2,JO1);
addO2 :add4 PORT MAP (CLK,addO2_en, s5,s6,J02);
addO3 :add4 PORT MAP (CLK,addO3_en, JOl s3,J03);
addO4 :add4 PORT MAP (CLK,add04_-en, J02,s7,J04);
addO5 :add4 PORT MAP (CLK,addO5_-en, J03,s4,J05);
addO6 :add4 PORT MAP (CLK,addO6_en, J04,s8,J06);
addO7 :add4 PORT MAP (CLK,addO7_-en, JOS J06,J07);
addO8 :add4 PORT MAP (CLK,addO8_en, B3,MOlJ08);
addO9 :add4 PORT MAP (CLK,addO9_en, B4,J08,J09);
addlO :add4 PORT MAP (CLK,addlO en, M02,J06,J1O);
addl 1 :add4 PORT MAP (CLK,addl 1_en, J08,J07,J1 1);
addl2 :add4 PORT MAP (CLK,addl2_en, J1O B35,J12);
addl3 :add4 PORT MAP (CLK,addl3_en, Jl J1O ,J 13);
addl4 :add4 PORT MAP (CLK,addl4_en, BO,M03,J14);
addiS :add4 PORT MAP (CLK,addl5_enBi J14,J15);
addl6 :add4 PORT MAP (CLK,addl6_en, J14,M03,J16);
addl7 :add4 PORT MAP (CLK,addl7_en, J16,S11,J17);
addl8 :add4 PORT MAP (CLK,addl8_en, 512,M04,J18);
addl9 :add4 PORT MAP (CLK,addl9_en, M05,s13,J19);
add2O :add4 PORT MAP (CLK,add2O-en, Ji 8,18,J20);
add2l :add4 PORT MAP (CLK,add2l -en, J1I7, I19,J2 1);
add.22 :add4 PORT MAP (CLK,add22_-en, M06,s9,J22);
add23 :add4 PORT MAP (CLK,add23_-en, B6,J22,J23);
add24 :add4 PORT MAP (CLK,add24_en, J22, IlO,J24);
add25 :add4 PORT MAP (CLK,add25_en, B2,J23,J25);
add26 :add4 PORT MAP (CLK,add26_en, J22,M07,J26);

mullI :mull12 PORT MAP (CLK mull1_en, J07,W3,MOl1);
mul2 :mull2 PORT MAP (CLK,mul2_en, J07,Wl,M02);
mul3 :mull 2 PORT MAP (CLK,mul3_en, J09,W8,M03);
mul4 :mull2 PORT MAP (CLK,mul4_-en, J1I5,W7,M04);
mul5 :mu~l12 PORT MAP (CLK,mul5_-en, J17,W6,M05);
mul6 :muIl2 PORT MAP (CLK,mul6_en, J12,W2,M06);
mul7 :mull12 PORT MAP (CLK,mul7_en, J24,W4,M07);
mul8 :mull2 PORT MAP (CLK,mul8_en, J25,W5,M08);

bufD:bufl PORT MAP (CLK bufO -en, JO 1,13O);
bufi :bufl PORT MAP (CLK bufi en, JO 1,13 1);
buf2 :bufl PORT MAP (CLK buf2_en, J02,B2);
buf3 :bufl PORT MAP (CLK buf3_en, J03,133);
buf4 :bufl PORT MAP (CLK buf4_en, J03,134);
buf5 :bufl PORT MAP (CLK buf5_en, J06,135);
buf6 :bufl PORT MAP (CLK buf6_en, JlO,B6);
buf7 :bufl PORT MAP (CLK buf7_en, J13,137);
buf8 :bufl PORT MAP (CLK buf8_en, J14,B8);

END stuct;

END IF;
END PROCESS;

END func;

ENTITY sum IS
GENERIC (t:Integer :=4);
PORT (clk,en :IN Integer;a,b : IN Integer; z: OUT Integer);

END sum;

ARCHITECTURE func OF sum IS
BEGIN

PROCESS (clk,en)
VARIABLE started :Boolean:= FALSE;
VARIABLE cnt: Integer :=0;

BEGIN
IF en'EVENT AND en=l THEN started:= TRUE;

cnt :--t;
END IF;
IF started THEN

IF cnt :=0 THEN
z<=a+b;
started := FALSE;

END IF;
IF clk'EVENT THEN

cnt := cnt-1;
END IF;

END IF;
END PROCESS;

END func;

ENTITY shift1 IS
GENERIC (t:Integer :=5);
PORT (clk,en : IN Integer; a: IN Integer ; z: OUT Integer);

END shiftl;

ARCHITECTURE func OF shiftl IS
BEGIN

PROCESS (clk,en)
VARIABLE started : Boolean := FALSE;
VARIABLE cnt : Integer :=0;

BEGIN
IF en'EVENT AND en=1 THEN

started := TRUE;
cnt := t;

END IF;

IF started THEN
IF cnt :=0 THEN

z<=a;

started := FALSE;
END IF;
IF clk'EVENT THEN

cnt := cnt-1;
END IF;

END IF;
END PROCESS;

END func;

ENTITY shift2 IS
GENERIC (t: Integer :=22);
PORT (clk,en • IN Integer; a: IN Integer; z: OUT Integer);

END shift2;

ARCHITECTURE func OF shift2 IS
BEGIN

PROCESS (clk,en)
VARIABLE started : Boolean := FALSE;
VARIABLE cnt : Integer:=0;

BEGIN
IF en'EVENT AND en=l tHEN

started := TRUE;
cnt :=t;

END IF;
IF started then

IF cnt :0 THEN
z<=a;

started := FALSE;
END IF;

IF clk'EVENT THEN
cnt := cnt-1;

END IF;
END IF;

END PROCESS;
END func;

ENTITY shift3 IS
GENERIC (t: Integer :=9);
PORT (clk,en : IN Integer; a: IN Integer; z: OUT Integer);

END shift3;

ARCHITECTURE func OF shift3 IS
BEGIN

PORT (clk, en: IN Integer; a: IN Integer; z :OUT Integer);
END buff;

ARCHITECTURE func OF buff IS
BEGIN

PROCESS(clk,en)
VARIABLE started : BOOLEAN :=FALSE;
VARIABLE cnt :Integer:=0;

BEGIN
IF en'EVENT AND en=l THEN started :=TRUE;

cnt :--t;
END IF;
IF started THEN

IF cnt =0 THEN
z <=a;

started :=FALSE;
END IF;
IF clk'EVENT THEN

cnt :=cnt-1;
END IF;

END IF;
END PROCESS;

END func;

ENTITY mul IS
GENERIC (t:Integer :=8);
PORT (clk,en : IN Integer;a,b • IN Integer ; z: OUT Integer);

END mul;

ARCHITECTURE func OF mul IS
BEGIN

PROCESS (clken)
VARIABLE started : Boolean := FALSE;
VARIABLE cnt : Integer :=0;

BEGIN
IF en'EVENT AND en=1 THEN

started := TRUE;
cnt :--t;

END IF;
IF started THEN IF cnt :=0 THEN

z<=a*b;
started :=FALSE;

END IF;
IF clk'EVENT THEN

cnt := cnt-1;
END IF;

PROCESS (clk,en)
VARIABLE started: Boolean:= FALSE;
VARIABLE cnt: Integer:=O;

BEGIN
IF en'EVENT AND en=1 tHEN

started:= TRUE;
cnt :--t;

END IF;
IF started then

IF cnt :0 THEN
z<=a;

started:= FALSE;
END IF;
IF clk'EVENT THEN

cnt := cnt-1;
END IF;

END IF;
END PROCESS;

END func;

ARCHITECTURE struktura OF diff IS
COMPONENT buff PORT (c,e,a: IN Integer; z: out Integer); END COMPONENT;
COMPONENT mul PORT (c,e,a: IN Integer; z: out Integer); END COMPONENT;
COMPONENT sum PORT (c,e,a: IN Integer; z: out Integer); END COMPONENT;
COMPONENT shiftl PORT (c,e,a: IN Integer; z: out Integer); END

COMPONENT;
COMPONENT shift2 PORT (c,e,a: IN Integer; z: out Integer); END

COMPONENT;
COMPONENT shift3 PORT (c,e,a: IN Integer; z: out Integer); END

COMPONENT;

FOR mull : mul USE ENTITY Work.mul(func);
FOR mul2• mul USE ENTITY Work.mul(func);
FOR mul3: mul USE ENTITY Work.mul(func);
FOR mul4• mul USE ENTITY Work.mul(func);
FOR mul5: mul USE ENTITY Work.mul(func);
FOR suml : sum USE ENTITY Work.sum(func);
FOR sum2: sum USE ENTITY Work.sum(func);
FOR sum3: sum USE ENTITY Work.sum(func);
FOR sum4: sum USE ENTITY Work.sum(func);
FOR shl : shiftl USE ENTITY Work.shiftl(func);
FOR sh2: shift2 USE ENTITY Work.shift2(func);
FOR sh3 : shift3 USE ENTITY Work.shift3(func);
FOR OTHERS: buff USE ENTITY Work.buff(func);

SIGNAL ml,m2,m3,m4,m5,s,pl,p2,p3,shl,sh2,sh3 : Integer;

BEGIN
bufi buf PORT MAP(CLK bufi -en,m2);
buf2: buf PORT MAP(CLK buf2_-en,ml);
buf3 :buf PORT MAP(CLK buf3_en,m3);
mull: mul PORT MAP(CLK,mull~en,x,pl);
mul2: mul PORT MAP(CLK,mul2-en,u,dx);
mul3: mul PORT MAP(CLK,mul3_en,y,dx);
mul4: mul PORT MAP(CLK,mul4-en,p2,q);
mul5: mul PORT MAP(CLK,mul5_en,p3,q);
sumi sum PORT MAP(CLK,suml-en,x,dx);
sum2: sum PORT MAP(CLK,sum2-en,m2,y);
sum3 :sum PORT MAP(CLK,sum3_en,m4,sh3);
sum4: sum PORT MAP(CLK,sum4_en,u,s);
shi shifti PORT MAP(CLK shi-en,s5,x);
sh2 shift2 PORT MAP(CLK sh2_en,s5,u);
sh3 shift3 PORT MAP(CLK sh3_en,s5,m5);

END struktura;

Conclusions

Comparing the results of this two high-level synthesis tool (PIPE, WinSam)

we found that WinSam can reduce the number of the needed synchronisation

buffers in a very efficient way. In those cases where the input structure

(represented by an EOG) is symmetrical, the PIPE and the WinSam found nearly

the same solution. In the structures where the EOG is less symmetrical, that means

more mobility, the PIPE could find the better solution. The reason of this that

WinSam follows a definite philosophy to fix the mobilities, while pipe generates

all the possible situations and the decision about the best structure is made after all

design steps has been executed. The 'price' of the more beneficial result is the

sometimes 2... 5 times slower processing time. We are still working to apply the

method which can reduce the needed synchronisation buffers into the PIPE.

The benchmarks and the solutions were published in this report are the

results of a continues work. Each group had three consultation times where they

had to show their supervisor the temporary results. Sometimes we found that the

students in one group couldn't work together which resulted different EOGs (It is
impossible to compare the methods when the starting points, the input structure is

different.). It proved the fact that for the solution of a HLS tool is a function of the

structure was build up from the original task.

References

FIR filter:
Unified System Construction (USC)

Alice C. Parker, Kayhan Kucukcakar, Shiv Prakash, Jen-Pin Weng
PISYN-High-Level Synthesis of Application Specific Pipelined Hardware

Albert E. Casavant, Ki Soo Hwang, Kristen N. McNall
Diferential Equation Solver:

Force-Directed Scheduling for the Behavioral Synthesis of ASIC's
Pierre G. Paulin, John P. Knight

Global Scheduling and Allocation Algorithms in the HAL System
Pierre G. Paulin

Scheduling and Assgnment in High-Level Synthesis
Wolfgang Rosenstiel, Heinrich Kramer

Elliptic Filter:
High-Level Synthesis in the THEDA. System

Yu-Chin Hsu, Youn-Long Lin

Experiences and Statistics of the Curriculum

edited by

Tamis Visegrfidy

Technical University of Budapest
Faculty of Electrical Engineering and Informatics

Department of Process Control

Experiences with the Curriculum

After successfully completing two semesters of High-level synthesis, the first results

were statistically analyzed. The results are used as feedback to improve the properties of

the education.

Student background

Integrated into the studies of Computer Systems and Microelectronics branches, the

majority of the students on the course (more than 80 %) had a strong practical

background in digital computing systems. The material presented during the lessons was

based partly on this knowledge base. All the students were seniors (3rd grade or over).

Should the course be presented to junior students, a more detailed description of the

fundamentals would be required to guarantee proper understanding. This should be

avoided as the increase in the necessary number of hours would be significant.

As most of the students started the course with a strictly practical background, the

organization of the classes was a mixture of theoretical and practical sections. It would be

possible to synchronize the progress in theory with parallel practical subjects, which would

result in an improved communication between different fields and also remove some of the

practical lessons to enable deeper studies in some directions.

Student effort

As well as attending the lectures, the students were required to complete two design

problems. The first task was an introduction to the design systems used in high-level

synthesis and concentrated on the technical problems. The task was taken from a section

of high-level synthesis (scheduling), where the students had to compare various algorithms

and write a report on the results and the conditions. The estimated net work time was

between 5 and 10 hours (with some previous calculations), after which the students were

able to independently prepare input for a high-level synthesis design system, monitor the

progress of the design process and evaluate the results.

The communication channels used during the evaluation of the results were strictly non-

verbal (i.e. e-mail). The theoretical background was presented during the lectures. The

technical skills used were introduced in a session of practical lessons.

All the problems were given to the students on an individual basis. The problems were

based on real design processes, with some generalizations to ensure diversity. As the

problems were generated using a randomizer, students could cooperate in teams in the

general solution, with additional effort to substitute their personal problems to the general

solution individually.

The total time span of the the design process was four weeks. All the students were all

able to finish the process by the deadline, with the first results returned in 2 (two) days.

The results were officially accepted after testing, with personal notes posted to the

students.

By carefully choosing the problems and prescribing the result format, the correct answers

could be generated using the design systems. As a result, unflawed answers were

recognized without human intervention, while incorrect results had to be examined using

human resources. This enabled the reviewers to concentrate on the typical problems and to

find critical points in the courses. This feedback was used during the composition of the

coursebooks.

The theoretical and practical lectures to be used during the first design process were

presented by T. Visegrady.

The second design process was performed in the last third of the semester. This task was a

complete design, enveloping the initial, intermediate and (part of) final sections of high-

level synthesis (graph generation, scheduling and allocation). The total time reqired was

between 30 and 50 net hours of work for every student. The students were given matched

problems in groups, so they could work in teams. Every group had subtle differences in

the individual problems, so they could cooperate in general and refine the results on an

individual basis.

Necessary theoretical material had been presented at the distribution of the problems. As

the work involved significant individual research, the first results required more than two

weeks to turn up. The last results were submitted just before the final deadline, so the

estimated time frame was suitable for the task. The second design task was based on the

successful completition of the first design process, so it required no separate introduction

to the technics of design, except for the subtle differences between the design systems.

The theoretical background was presented and the consulting lectures were led by I.

Jankovics and I. Beres.

Any student successfully submitting both design problems has an overall knowledge of

automatic tools employed during high-level synthesis, had working experience with a high-

level scheduler (with significant knowledge on the internals of it) and is able to use the

PIPE or WINSAM design systems for a complete design.

Developing a VLSI Module-generator
Interfaced to the PIPE as a Part of a

Collaborative Engineering Curriculum

Edited by Zoltan Sugar

Department of Process Control

Technical University of Budapest

Developing a VLSI Module-generator Interfaced to the PIPE as
a Part of a Collaborative Engineering Curriculum

Zoltan Sugar

Abstract

This report presents a model for designing pipelined data-flow structures
with primary focus on module and control path generation part of the design

flow. Control-data path interface has been developed for different
requirements. A CAD program associated with the model generates a
synthetizable description about the data path elements and the control part
from a high-level data-flow description providing a useful tool to the developer
with hiding quite a large amount of implementation difficulties. The developed

CAD tool has been integrated into a framework environment with a standard
and easy-to-use interface that may improve the collaboration among research
and engineering teams.

Introduction

Since the complexity of digital systems has been increased to a very high
level the electronics designers are less and less concerned for circuit layouts or
circuit diagrams. It is especially true for the high speed data processing
elements, in which case there is significant importance of the parallel and
regular structures, like systolic and wavefront arrays and pipelined circuits.
New synthesis algorithms are raising the level of abstraction to reduce the
engineering costs, and development time and to improve the reliability of the
design process. High-level logic synthesis establishes a connection between this
abstract level and the register transfer or gate level representation of the circuit.
Thus the high level synthesis is built on the widely used RTL synthesis. Since
no commercial CAD software is available for this kind of design methods, there
is of no significance in the industry.

The design method presented in this report introduces a way for tuning he
data-flow graph to achieve the best cost per performance value. Scheduling and
allocation algorithms can handle the typical pipelined structures. The module
generator has been developed can realise the basic operation and the control
path automatically. A CAD software has been also developed which is

integrated to a commercial framework environment. It provides an easy-to-use,
user fiendly tool that can extend the existing ASIC design flow to a higher
level of abstraction.

Nowadays there is an importance of the collaborating engineering. It
means that the given design is accomplished by several and mostly independent
engineering teams. On the other side, the collaboration may be between among
different research groups, often at the far points of the world with dividing the
complex research activities into smaller parts. As an example, a strong
cooperation has been built between the University of New Hampshire and the
Technical University of Budapest. The backbone of this cooperation is a
student exchange program. For the sake of successful cooperation, a powerful
communication method is required based on the well-known international
standards. The developed CAD tool may satisfy this requirement. The input
and the output of this tool are conform with the ISO VHDL standard. The input
parser may accept a well-defined subset of the VHDL.

The report is organised into four sections. The first section introduces the
basic scheduling and allocation algorithms. The second section discusses the
module generation procedures. The third section presents two different ways
for controlling the data path. The last section discusses the CAD tool associated
with the algorithms.

1. Scheduling and Allocation Procedures

High-level synthesis starts with the behavioral description of the circuit.
Synthesis procedures can usually accept a data flow graph as input. This graph
can be derived from a HDL description, for example from a VHDL or a Verilog
behavioral specification. The data flow graph is a directed graph in which the
nodes represent the functional elements and the edges establish the logical
connections between them. It is assumed that functional elements can have
several inputs but only one output. In reality this restriction does not cause any
limitation, because the physical outputs can be collected into one logical
connection. Two basic properties may be assigned to the functional elements,
the number of inputs and the delay time. This delay time determines the
number of control steps required for finishing the operation. As described later,
these properties may be extended by additional information to improve the
scheduling and allocation algorithms.

The system is considered to be pipelined if the scheduled data flow graph

is able to receive new data before finishing the operation of the last functional

element. Obviously, throughput is maximised if the frequency of the data

changes is maximised. The shortest permissible interval of the data changes on

the inputs is called minimal restarting period. Especially, in the case of hard

real-time applications, it is required to reduce the latency time, the time

between applying the data for the inputs of the circuit and arriving the

corresponding result on the outputs. Unfortunately, it is not possible to increase

the throughput of a system by decreasing the restarting period and

simultaneously reducing the latency time, because these parameters correlate

with each other.

The most important scheduling and allocation algorithms - list scheduling,

modified ASAP/ALAP, ILP, force-directed, etc.) - are published. These

methods have been examined and are applicable for pipelined structures.

2. Module Generation

Main purpose of the module generation is to map the scheduled, allocated
and controlled data-flow graph to RT or gate-level representation based on the

given constraints. In most cases this description is represented by hardware

description languages and it may be direct input of widely used RTL syntetisers

and logic optimisers. The advantage of the RT level representation is the cell

library independence. The module generator has also significance at the

beginning of the high-level design methodology, in the pre-allocation step.

Since only the module generator has knowledge about the internal

structure and the behaviour of the functional elements, thus only it can
determine the cost functions and the delays. It should be noted that the module

generator does not decide the circuit implementation in the pre-allocation
phase, just offers a choice list with the corresponding properties and just later,

during the optimisation, scheduling and allocation stage makes the optimal and
less expensive decision.

Consider for example the following simple problem. Somewhere in the

data-flow graph a multiplication operation must be implemented. The module

generator has two types of modules for multiplication, a traditional shift-and-
add and a Radix-4 multiplier, with 9 and 3 control steps of delay and 90 and

170 relative cost respectively. Assuming that the required restarting period is

equal to 4 and the traditional multiplier does not support functional pipelining,

obviously it must be multiplied by three times. Hence the relative cost is over
270, the scheduler chooses the Radix-4 multiplier. This example demonstrates a
simple case, in reality the mechanism of making decision is much more
complicated.

In the pre-allocation phase the module generator provides additional
properties for the functional elements to improve the efficiency of the
scheduling and allocation procedures. A functional element cannot be restarted
under its and the next immediate successor's operations and the functional
element must hold its output under operation of the next successor. This means
that the result of functional element must be latched into a register in the last
clock cycle of its operation. Consequently, if the functional element is
implemented by combinatorial logic or sequential logic but the last register
does not play role in forming the result, the operation may be restarted
immediately again without violating communication rules between the
functional elements. Obviously, these registers may be placed at the inputs of
the functional element to latch the input data in the first cycle of the operation.
In this case the previous functional element in the transfer sequence may be
restarted earlier. From the point of view of scheduling these registers can be
treated as pipeline buffers. The scheduler has a freedom to place these to the
input or to the output of the functional element to get an optimal result. In most
cases less optimisation may be applied if the operation is implemented by
sequential logic. For example, generally the input and output registers cannot
be exchanged, but if the functional element stores the input data, or the output
registers do not play act in forming the result, the considerations discussed
above may be taken into account.

If the delay time of a functional element exceeds the required restarting
period, the operation must be multiplied. This means that the physical copies of
the functional elements must be connected in parallel and multiplexers must be
inserted into the data-path with special control elements to switch the data to

the appropriate functional element. This method increases the total cost more
than

(c - 1). CFE times, where (8)

c denotes the required number of copies,
CFE denotes the relative cost of the given functional element.

thus it should be avoided, if possible. If the operation may be divided into
smaller suboperations, that do not form a loop, if the delay of suboperations are

smaller that Trequired -1 and pipeline registers are inserted between these

suboperations, the functional element may be restarted in every

max(tdi,,tdi2,...,tdlf) + I control step. (9)

tdin denotes the delay of n. suboperation of i. functional element.

This structure is called functional pipelined operation and in some cases it

can substitute the direct multiplication.

A typical example, the internal structure of a floating point adder is shown

in Fig. 1. Since the cost of this operation is extremely high, the multiplication

as a scheduling method is not
Sapplicable. The adder may be split

into smaller operation. The numbers

2 of pipelined stages depend on the
required restarting period. In this

----------------- example three set of pipeline register

must be inserted.
.IP 2 This feature of functional

elements provides more freedom for--------- - -- --

+ v- + z the allocation procedures. Obviously,
-Y if an operation is functional pipelined

+1 1 2 +1 >> and it may be restarted in every Trf
interval, where Trf is less or equal to

half of the restarting period of data-
Q flow graph,

Fig. 1. Functional pipelining In the pre-allocation phase it

must be decided which operation may

be combined with each other later by the allocator. For example, it is easy to
implement a floating point adder and a substructor in one processor, or two

multipliers with different widths.

3. Control Path

The scheduled and allocated data path cannot function properly without

external components It must be extended with the control path which can
provide control signals for starting the operations of the functional elements,

for writing the data into the buffers and for the multiplexers to connect the

appropriate data path before and after the combined and multiplied operations.

The control path ensures that functional elements start their operations in
proper time and then all data are stable on the inputs.

Two models were developed for controlling the data path that require two

different interfaces from the functional elements. These two methods are the
centralised and distributed control path. The main benefit of these models is
that they may be generated automatically based on the timing information
provided by the scheduled and allocated data-flow graph.

D1 D2 D3Restardna Period 0s a t D 1 D •/ 3t= 2) c lo c k _L j "j _ _F • f _L i i•" _

startstart

s3t D5 D4

-start3
D6Send4 • =•D6 @ j

D 8 end4
D7,D8 (I)

Fig. 2. Centralised controlling scheme

The centralised control path may be completely separated from the data
path, as shown in Fig. 2. with the corresponding timing diagram. In this model
every functional element has a start signal. If this signal is activated the
functional element starts its operation. This signal is synchronised with the
raising edge of the system clock signal. Instead of the start signal, the
functional elements can have an end signal that indicates the end of the
operation. If the functional element is implemented by a combinatorial logic
these signals may be used for writing the input data or the result into the buffer.
According to the input-output specification of the functional elements, the end

signal must be delayed with a half clock cycle. The main advantage of the
centralised controlling scheme is the simplicity of the implementation. In most
cases the realisation is a Johnson counter. Outputs of this counter may be
directly connected to the corresponding start signals of the functional elements.
Since this kind of control path is relatively simple and the model matches with
the internal structure of most of the functional elements, the extra silicon area
occupation is small compared to data path operations. The centralised
controlling scheme has a disadvantage. If the data-flow graph contains a large
number of functional elements then the generated VLSI die will be huge and
the interconnection delays of the controlling signals cannot be neglected. This

delay decreases the highest operation frequency. It is especially true if the

target technology is Multi Chip Module and the design does not fit onto one

die, since the I/O pads cause additional delay between the functional elements.

t=2 clock 7J7.P\ 7 I!hY FL

"D op2 D 0

apl D54

t= D6 0 0 ®
::.... op4 op4 _J- -

•7 .8D7,D8 0 0(

Fig. 3. Distributed controlling scheme

To avoid this problem, the distributed controlling scheme should be used.

In the literature for this model, control elements are defined that are in
handshake relationship with the functional elements This communication is

:• time consuming and makes slower the operations. In this model every
:: ;:functional element contains this control element to eliminate this unnecessary

communication. The functional element activates a signal under its operation,

as shown in Fig. 3. This signal is deactivated in the last clock cycle of the

operation and this rising edge and the next rising edge of the system clock
signal starts the next functional element in the transfer sequence. This

controlling scheme can handle the problem mentioned above, since the
;v; i.•;interconnection delays of the control signals may be compered to the delays of

the data path. The other benefit of distributed control path is the system does
::• •:not require a strict restarting interval. It means that if the data-flow graph does

not contain recursive loops it can be restarted with equal or longer interval than

the actual restarting period. The only disadvantage associated with this model is

the large number of extra logic required to implement that.

As a conclusion, if the data-flow graph is small and the operation
frequency is not high the centralised control path gives a small and efficient
solution. In the case of a high performance and complicated design, however,

only the distributed controlling scheme can gnarantee a reliable operation.

4. Synthesis Software Products

State-of-the-art CAD systems should provide more and more aid for the

electronic designers. This means that a good design system should support

consistent descriptions in all design description domains (system specification,

behavioral, structural and physical levels) and integrated tools for the

simulations and for the verifications. It is also required to automate the design

steps as much as possible to reduce the needed development time and hence the

cost of engineering.

Modem CAD systems can accomplish these tasks with providing

consistent database management and access, powerful communication protocol

for the different kind of tools and user friendly, uniform graphics environment

for the user. This complex system is called framework. In most cases it may be

extended by programming in a vendor dependent language. Nowadays the

simulation procedure is one of the most critical points of the design process. Of

course all description domains have to be simulated with the same simulator, if

possible. In this case the electronic designer can apply the same test vectors (or

with minor modifications) which increases the reliability of simulation and

simultaneously reduces the required development time. The framework should
provide the back annotation feature to improve the accuracy of the descriptions

at the higher abstraction levels. Finally, CAD systems should support the

available ASIC technologies (FPGA, VLSI and MCM).

When a new design methodology has been developed, it is recommended

to connect to an existing framework environment, unless we wish to create a

completely new CAD system. Since in most cases the new tool covers just a

few design steps thus probably the extension is the better choice and it requires
less effort.

A special type of the extensions is the interfacing. In this case the new
CAD tool is not a part of the framework environment, just a standalone

application that has a well-defined interface. This interface is usually a standard

hardware description language (VHDL or Verilog), a netlist format (EDIF) or
physical description file (for VLSI layouts CIF, GSDII, etc.) depending on the

abstraction level. Interfacing has several disadvantages. First of all, it does not
provide a uniform database management and access. Because of the required

data conversion some information may have been lost. Implementation of the

simulation method was discussed earlier with the forward and back annotations

is also not easy. Because of these reasons, interfacing as an extension method is

recommended in the case of small applications that realise a small number of

design steps and where these constraints do not cause flexibility loss.

The real integration of a CAD tool does not have these disadvantages but

requires much more programming effort from the CAD engineers because of

the complexity of the commercial framework products.

4.1 High-Level Synthesis Tool Integration to the Design Framework II

One of the most popular frameworks is the Design Framework I1® of the
Cadence OPUS that is extensible with C or SKILL programming languages. A
new high-level synthesis tool has been developed and integrated into this

framework. This program provides a user-friendly environment for editing,

simulating and synthetising the data-flow graph, as illustrated in Fig. 4. The
synthesis procedures cover the algorithms discussed in this report. The created

data-flow graph may be a part of a larger design, its inputs and outputs may be
connected to other schematics and HDL descriptions.

It means that the complex design flow may be separated into smaller parts

and all engineers work only on a specific stage of the design (system
specification, testing, placing and routing, final verification, etc.). This

framework environment provides a huge aid for this kind of cooperation and
collaboration and ensures the uniform and safe database exchange among the

engineers. By using FrameMaker® product, the documentation may be created
parallel with the design.

. The design flow of high-level................. ::

synthesis is shown in Fig. 5. The
synthesis procedure starts with the

data-flow graph that may be
entered by using the graphics

editor or may be derived from a
VHDL description via a VHDL to

DFG compiler. This VHDL
interface may be useful because the

............ x well-known benchmarks are written
........ .L Th.rah issord o

Fig. 4. Data-flow graph editor in VHDL. The graph is stored on
the disks in the standard CDBA

format (Cadence Database) and a completely new view type is associated with
it (dfg). The view of the VHDL description is derived from the vhdl view type.

This description may be simulated by the LeapFrog® simulator. The nodes of

the data-flow graph are described in three different views. The node view

contains the symbol and I/O information and is derived from symbol view type.
The functional view describes the behaviour of the operation and it is written in
Verilog language. Finally, the nodeprop view defines the properties associated
with the processor. This information is stored as a set of SKILL statements. The
predefmed operators are collected in the library DfgLib. The user may extend
this library by creating the listed views.

After defining the HLS constraints and selecting the type of the
scheduling by the user, the synthesis procedures may be started in the given

order. If required, the optimiser creates the optimised data-flow graph with the
view dfg. opt. The scheduler and the allocator can create a cost per performance
curve to aid the designer in selecting the run configuration with the most
optimal trade-off. Immediately after the scheduling the data-flow graph may be
simulated standalone or with the other part of the design by the Verilog-XL®
simulator. As a final step of synthesis, the module generator creates the
controlled data-flow graph (with the view of cdfg) and the Verilog RT level
description of processors and control logic. The module generator provides
additional constraints for RTL synthesiser, based on the original user
parameters and the internal structure of the data-flow graph. The next design
step is the technology mapping for the available technologies (gate arrays,
VLSI, MCM). Using the final verification tools the exact delay times may be
extracted from the layout for simulation and back annotation purpose.

A FIR filter design has been accomplished based on the design

methodology discussed in this paper. The layout, shown in Fig. 6., has been

* VHDL description Data-flaw Graph HLS constraints

* DFG Optimiser

* Pre-allocation

* Mo~~ShduleiGnertrGeeao

Generatoro

FerameorrI

=to ._______________________

created by the Cell Ensemble® product using ES2 technology.

F ig.5. L

Fig. 5. Layout of the FIR filter

